--- license: apache-2.0 base_model: google/mt5-base tags: - generated_from_trainer metrics: - rouge - sacrebleu model-index: - name: mT5-TextSimp-LT-BatchSize4-lr5e-5 results: [] --- # mT5-TextSimp-LT-BatchSize4-lr5e-5 This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1611 - Rouge1: 0.46 - Rouge2: 0.2767 - Rougel: 0.4464 - Sacrebleu: 23.2936 - Gen Len: 39.0358 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Sacrebleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:--------:| | 36.6446 | 0.48 | 200 | 31.2765 | 0.0004 | 0.0 | 0.0004 | 0.0003 | 512.0 | | 11.5223 | 0.96 | 400 | 6.7786 | 0.0031 | 0.0 | 0.0031 | 0.0045 | 89.2816 | | 2.2686 | 1.44 | 600 | 0.6729 | 0.0054 | 0.0 | 0.0053 | 0.0196 | 39.0501 | | 0.7009 | 1.91 | 800 | 0.6529 | 0.0029 | 0.0 | 0.0027 | 0.0424 | 41.401 | | 0.6213 | 2.39 | 1000 | 0.5630 | 0.0058 | 0.0002 | 0.0056 | 0.0201 | 39.0334 | | 0.6435 | 2.87 | 1200 | 0.4697 | 0.0688 | 0.0084 | 0.0608 | 0.1156 | 39.0453 | | 0.4154 | 3.35 | 1400 | 10.4655 | 0.2098 | 0.1219 | 0.2011 | 0.671 | 350.0334 | | 0.6289 | 3.83 | 1600 | 1.9257 | 0.3176 | 0.1945 | 0.3072 | 3.6031 | 138.7494 | | 3.5542 | 4.31 | 1800 | 0.8459 | 0.373 | 0.2029 | 0.3615 | 16.8305 | 59.8568 | | 8.1736 | 4.78 | 2000 | 7.2350 | 0.3147 | 0.1815 | 0.3033 | 7.3572 | 289.1432 | | 2.3987 | 5.26 | 2200 | 0.8361 | 0.3616 | 0.1903 | 0.3501 | 16.2229 | 61.0668 | | 0.9853 | 5.74 | 2400 | 0.4219 | 0.3635 | 0.2004 | 0.3515 | 15.2744 | 46.494 | | 0.3575 | 6.22 | 2600 | 0.3516 | 0.3796 | 0.2121 | 0.3687 | 13.6464 | 46.1623 | | 0.4497 | 6.7 | 2800 | 0.2597 | 0.4392 | 0.2698 | 0.4263 | 18.9423 | 42.2697 | | 0.2582 | 7.18 | 3000 | 0.1583 | 0.4442 | 0.2579 | 0.431 | 21.5533 | 38.1671 | | 0.2629 | 7.66 | 3200 | 0.1611 | 0.46 | 0.2767 | 0.4464 | 23.2936 | 39.0358 | ### Framework versions - Transformers 4.33.0 - Pytorch 2.1.2+cu121 - Datasets 2.14.4 - Tokenizers 0.13.3