File size: 3,112 Bytes
a2e576b
a898ff3
a2e576b
a898ff3
 
 
 
 
 
 
a2e576b
 
 
 
a898ff3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
---
base_model: openai/whisper-medium
library_name: transformers
license: apache-2.0
pipeline_tag: automatic-speech-recognition
tags:
- audio
- automatic-speech-recognition
- whisper
- hf-asr-leaderboard
---

<!-- Provide a quick summary of what the model is/does. -->

Lite-Whisper is a compressed version of OpenAI Whisper with LiteASR. See our [GitHub repository](https://github.com/efeslab/LiteASR) and [paper](https://arxiv.org/abs/2502.20583) for details.

## Benchmark Results

Following is the average word error rate (WER) evaluated on the [ESB datasets](https://huggingface.co/datasets/hf-audio/esb-datasets-test-only-sorted):

| Model | Average WER (↓) | Encoder Size | Decoder Size |
|-------|----------------|--------------|--------------|
| [whisper-tiny](https://huggingface.co/openai/whisper-tiny) | 22.01 | 7.63M | 29.55M |
| [lite-whisper-tiny-acc](https://huggingface.co/efficient-speech/lite-whisper-tiny-acc) | 22.97 | 7.41M | 29.55M |
| [lite-whisper-tiny](https://huggingface.co/efficient-speech/lite-whisper-tiny) | 23.95 | 7.00M | 29.55M |
| [lite-whisper-tiny-fast](https://huggingface.co/efficient-speech/lite-whisper-tiny-fast) | 27.09 | 6.48M | 29.55M |
| &nbsp; | &nbsp; | &nbsp; | &nbsp; |
| [whisper-base](https://huggingface.co/openai/whisper-base) | 17.67 | 19.82M | 52.00M |
| [lite-whisper-base-acc](https://huggingface.co/efficient-speech/lite-whisper-base-acc) | 19.07 | 18.64M | 52.00M |
| [lite-whisper-base](https://huggingface.co/efficient-speech/lite-whisper-base) | 19.71 | 17.44M | 52.00M |
| [lite-whisper-base-fast](https://huggingface.co/efficient-speech/lite-whisper-base-fast) | 23.05 | 16.07M | 52.00M |
| &nbsp; | &nbsp; | &nbsp; | &nbsp; |
| [whisper-small](https://huggingface.co/openai/whisper-small) | 15.89 | 87.00M | 153.58M |
| [lite-whisper-small-acc](https://huggingface.co/efficient-speech/lite-whisper-small-acc) | 15.37 | 76.99M | 153.58M |
| [lite-whisper-small](https://huggingface.co/efficient-speech/lite-whisper-small) | 14.96 | 70.16M | 153.58M |
| [lite-whisper-small-fast](https://huggingface.co/efficient-speech/lite-whisper-small-fast) | 14.92 | 63.11M | 153.58M |
| &nbsp; | &nbsp; | &nbsp; | &nbsp; |
| [whisper-medium](https://huggingface.co/openai/whisper-medium) | 15.12 | 305.68M | 456.64M |
| [lite-whisper-medium-acc](https://huggingface.co/efficient-speech/lite-whisper-medium-acc) | 13.46 | 269.93M | 456.64M |
| [lite-whisper-medium](https://huggingface.co/efficient-speech/lite-whisper-medium) | 14.50 | 239.99M | 456.64M |
| [lite-whisper-medium-fast](https://huggingface.co/efficient-speech/lite-whisper-medium-fast) | 14.52 | 215.31M | 456.64M |


## Citation

If you use LiteASR in your research, please cite the following paper:

```
@misc{kamahori2025liteasrefficientautomaticspeech,
      title={LiteASR: Efficient Automatic Speech Recognition with Low-Rank Approximation}, 
      author={Keisuke Kamahori and Jungo Kasai and Noriyuki Kojima and Baris Kasikci},
      year={2025},
      eprint={2502.20583},
      archivePrefix={arXiv},
      primaryClass={cs.LG},
      url={https://arxiv.org/abs/2502.20583}, 
}
```