File size: 4,460 Bytes
aff59b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
350d6ee
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
---

library_name: peft
license: apache-2.0
base_model: Qwen/Qwen2.5-1.5B
tags:
- axolotl
- generated_from_trainer
language:
- zho
- eng
- fra
- spa
- por
- deu
- ita
- rus
- jpn
- kor
- vie
- tha
- ara
model-index:
- name: b85a4e3d-93c8-46f3-92a5-8e718064e026
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.4.1`
```yaml

adapter: lora

base_model: Qwen/Qwen2.5-1.5B

bf16: auto

chat_template: llama3

cosine_min_lr_ratio: 0.1

data_processes: 4

dataset_prepared_path: null

datasets:

- data_files:

  - b69b8f2576840a57_train_data.json

  ds_type: json

  format: custom

  num_proc: 4

  path: /workspace/input_data/b69b8f2576840a57_train_data.json

  streaming: true

  type:

    field_input: student_answer

    field_instruction: question

    field_output: reference_answer

    format: '{instruction} {input}'

    no_input_format: '{instruction}'

    system_format: '{system}'

    system_prompt: ''

debug: null

deepspeed: null

device_map: balanced

do_eval: true

early_stopping_patience: 1

eval_batch_size: 1

eval_sample_packing: false

eval_steps: 25

evaluation_strategy: steps

flash_attention: false

fp16: null

fsdp: null

fsdp_config: null

gradient_accumulation_steps: 16

gradient_checkpointing: true

group_by_length: true

hub_model_id: eeeebbb2/b85a4e3d-93c8-46f3-92a5-8e718064e026

hub_strategy: checkpoint

hub_token: null

learning_rate: 0.0001

load_in_4bit: false

load_in_8bit: false

local_rank: null

logging_steps: 1

lora_alpha: 64

lora_dropout: 0.05

lora_fan_in_fan_out: null

lora_model_dir: null

lora_r: 32

lora_target_linear: true

lora_target_modules:

- q_proj

- v_proj

lr_scheduler: cosine

max_grad_norm: 1.0

max_memory:

  0: 75GB

  1: 75GB

  2: 75GB

  3: 75GB

max_steps: 50

micro_batch_size: 2

mixed_precision: bf16

mlflow_experiment_name: /tmp/b69b8f2576840a57_train_data.json

model_type: AutoModelForCausalLM

num_epochs: 3

optim_args:

  adam_beta1: 0.9

  adam_beta2: 0.95

  adam_epsilon: 1e-5

optimizer: adamw_torch

output_dir: miner_id_24

pad_to_sequence_len: true

resume_from_checkpoint: null

s2_attention: null

sample_packing: false

save_steps: 25

save_strategy: steps

sequence_len: 2048

strict: false

tf32: false

tokenizer_type: AutoTokenizer

torch_compile: false

train_on_inputs: false

trust_remote_code: true

val_set_size: 50

wandb_entity: null

wandb_mode: online

wandb_name: b85a4e3d-93c8-46f3-92a5-8e718064e026

wandb_project: Public_TuningSN

wandb_runid: b85a4e3d-93c8-46f3-92a5-8e718064e026

warmup_ratio: 0.04

weight_decay: 0.01

xformers_attention: null



```

</details><br>

# b85a4e3d-93c8-46f3-92a5-8e718064e026

This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B](https://huggingface.co/Qwen/Qwen2.5-1.5B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1482

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001

- train_batch_size: 2

- eval_batch_size: 1

- seed: 42

- distributed_type: multi-GPU
- num_devices: 4

- gradient_accumulation_steps: 16

- total_train_batch_size: 128
- total_eval_batch_size: 4

- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 2

- training_steps: 50

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 2.424         | 0.0264 | 1    | 3.6234          |
| 0.5879        | 0.6590 | 25   | 0.5001          |
| 0.0639        | 1.3410 | 50   | 0.1482          |


### Framework versions

- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1