--- library_name: peft license: llama3.2 base_model: NousResearch/Llama-3.2-1B tags: - axolotl - generated_from_trainer model-index: - name: 6a8050fe-e245-4bf5-92c6-2239194b4225 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Llama-3.2-1B bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - fffa53a70b34ee7a_train_data.json ds_type: json format: custom path: /workspace/input_data/fffa53a70b34ee7a_train_data.json type: field_input: section_names field_instruction: article field_output: abstract format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 256 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 32 gradient_checkpointing: true group_by_length: false hub_model_id: eddysang/6a8050fe-e245-4bf5-92c6-2239194b4225 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lora_target_modules: - q_proj - k_proj - v_proj - o_proj lr_scheduler: cosine max_grad_norm: 2 max_steps: 100 micro_batch_size: 2 mlflow_experiment_name: /tmp/fffa53a70b34ee7a_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1.0e-05 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 2048 special_tokens: pad_token: <|end_of_text|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: yaudayah0 wandb_mode: online wandb_name: 3276fb8f-c293-4b62-9f20-ac5afd3074e1 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 3276fb8f-c293-4b62-9f20-ac5afd3074e1 warmup_steps: 20 weight_decay: 0.02 xformers_attention: false ```

# 6a8050fe-e245-4bf5-92c6-2239194b4225 This model is a fine-tuned version of [NousResearch/Llama-3.2-1B](https://huggingface.co/NousResearch/Llama-3.2-1B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4919 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-05 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 20 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0016 | 1 | 1.8242 | | 1.6705 | 0.0141 | 9 | 1.6580 | | 1.6546 | 0.0282 | 18 | 1.5876 | | 1.5261 | 0.0424 | 27 | 1.5503 | | 1.4369 | 0.0565 | 36 | 1.5314 | | 1.5643 | 0.0706 | 45 | 1.5160 | | 1.4754 | 0.0847 | 54 | 1.5080 | | 1.4584 | 0.0988 | 63 | 1.5008 | | 1.4337 | 0.1129 | 72 | 1.4967 | | 1.5454 | 0.1271 | 81 | 1.4935 | | 1.4752 | 0.1412 | 90 | 1.4923 | | 1.4875 | 0.1553 | 99 | 1.4919 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1