File size: 21,098 Bytes
053689a
 
cc29805
 
053689a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff9a039
541413d
 
053689a
 
 
 
 
 
 
 
 
 
 
 
 
541413d
 
 
053689a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
541413d
053689a
 
541413d
053689a
 
 
541413d
 
 
053689a
541413d
 
 
 
053689a
 
 
 
 
541413d
 
 
 
053689a
541413d
 
 
 
 
 
 
 
 
 
 
 
 
 
053689a
 
 
 
 
 
 
 
 
541413d
 
 
 
 
 
 
 
 
053689a
541413d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
053689a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
541413d
 
053689a
 
 
 
541413d
 
 
 
 
 
 
053689a
541413d
 
053689a
541413d
 
053689a
541413d
 
 
74277bf
053689a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
541413d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
---
license: apache-2.0
pipeline_tag: image-text-to-text
library_name: transformers
---
<div align="center" xmlns="http://www.w3.org/1999/html">
<h1 align="center">
MonkeyOCR: Document Parsing with a Structure-Recognition-Relation Triplet Paradigm
</h1>

[![arXiv](https://img.shields.io/badge/Arxiv-MonkeyOCR-b31b1b.svg?logo=arXiv)](https://arxiv.org/abs/2506.05218)
[![HuggingFace](https://img.shields.io/badge/HuggingFace%20Weights-black.svg?logo=HuggingFace)](https://huggingface.co/echo840/MonkeyOCR)
[![GitHub issues](https://img.shields.io/github/issues/Yuliang-Liu/MonkeyOCR?color=critical&label=Issues)](https://github.com/Yuliang-Liu/MonkeyOCR/issues?q=is%3Aopen+is%3Aissue)
[![GitHub closed issues](https://img.shields.io/github/issues-closed/Yuliang-Liu/MonkeyOCR?color=success&label=Issues)](https://github.com/Yuliang-Liu/MonkeyOCR/issues?q=is%3Aissue+is%3Aclosed)
[![GitHub views](https://komarev.com/ghpvc/?username=Yuliang-Liu&repo=MonkeyOCR&color=brightgreen&label=Views)](https://github.com/Yuliang-Liu/MonkeyOCR)
</div>


> **MonkeyOCR: Document Parsing with a Structure-Recognition-Relation Triplet Paradigm**<br>
> Zhang Li, Yuliang Liu, Qiang Liu, Zhiyin Ma, Ziyang Zhang, Shuo Zhang, Zidun Guo, Jiarui Zhang, Xinyu Wang, Xiang Bai <br>
[![arXiv](https://img.shields.io/badge/Arxiv-b31b1b.svg?logo=arXiv)](https://arxiv.org/abs/2506.05218) 
[![Source_code](https://img.shields.io/badge/Code-Available-white)](https://github.com/Yuliang-Liu/MonkeyOCR)
[![Model Weight](https://img.shields.io/badge/HuggingFace-gray)](https://huggingface.co/echo840/MonkeyOCR)
[![Model Weight](https://img.shields.io/badge/ModelScope-green)](https://modelscope.cn/models/l1731396519/MonkeyOCR)
[![Demo](https://img.shields.io/badge/Demo-blue)](http://vlrlabmonkey.xyz:7685/)



## Introduction
MonkeyOCR adopts a Structure-Recognition-Relation (SRR) triplet paradigm, which simplifies the multi-tool pipeline of modular approaches while avoiding the inefficiency of using large multimodal models for full-page document processing.

1. Compared with the pipeline-based method MinerU, our approach achieves an average improvement of 5.1% across nine types of Chinese and English documents, including a 15.0% gain on formulas and an 8.6% gain on tables.
2. Compared to end-to-end models, our 3B-parameter model achieves the best average performance on English documents, outperforming models such as Gemini 2.5 Pro and Qwen2.5 VL-72B.
3. For multi-page document parsing, our method reaches a processing speed of 0.84 pages per second, surpassing MinerU (0.65) and Qwen2.5 VL-7B (0.12).

<img src="https://v1.ax1x.com/2025/06/05/7jQ3cm.png" alt="7jQ3cm.png" border="0" />

MonkeyOCR currently does not support photographed documents, but we will continue to improve it in future updates. Stay tuned!
Currently, our model is deployed on a single GPU, so if too many users upload files at the same time, issues like “This application is currently busy” may occur. We're actively working on supporting Ollama and other deployment solutions to ensure a smoother experience for more users. Additionally, please note that the processing time shown on the demo page does not reflect computation time alone—it also includes result uploading and other overhead. During periods of high traffic, this time may be longer. The inference speeds of MonkeyOCR, MinerU, and Qwen2.5 VL-7B were measured on an H800 GPU.

## News 
* ```2025.06.05 ``` 🚀 We release MonkeyOCR, which supports the parsing of various types of Chinese and English documents.


## Quick Start

### 1. Install MonkeyOCR
```bash
conda create -n MonkeyOCR python=3.10
conda activate MonkeyOCR

git clone https://github.com/Yuliang-Liu/MonkeyOCR.git
cd MonkeyOCR

# Install pytorch, see https://pytorch.org/get-started/previous-versions/ for your cuda version
pip install torch==2.5.1 torchvision==0.20.1 torchaudio==2.5.1 --index-url https://download.pytorch.org/whl/cu124 
pip install -e .
```
### 2. Download Model Weights
Download our model from Huggingface.
```python
pip install huggingface_hub

python tools/download_model.py
```
You can also download our model from ModelScope.

```python
pip install modelscope

python tools/download_model.py -t modelscope
```
### 3. Inference
```bash
# Make sure in MonkeyOCR directory
python parse.py path/to/your.pdf
# or with image as input
pyhton parse.py path/to/your/image
# Specify output path and model configs path
python parse.py path/to/your.pdf -o ./output -c config.yaml
```

#### Output Results
MonkeyOCR generates three types of output files:

1. **Processed Markdown File** (`your.md`): The final parsed document content in markdown format, containing text, formulas, tables, and other structured elements.
2. **Layout Results** (`your_layout.pdf`): The layout results drawed on origin PDF.
2. **Intermediate Block Results** (`your_middle.json`): A JSON file containing detailed information about all detected blocks, including:
   - Block coordinates and positions
   - Block content and type information
   - Relationship information between blocks

These files provide both the final formatted output and detailed intermediate results for further analysis or processing.

### 4. Gradio Demo
```bash
# Prepare your env for gradio
pip install gradio==5.23.3
pip install pdf2image==1.17.0
```
```bash
# Start demo
python demo/demo_gradio.py
```
### Fix **shared memory error** on **RTX 3090 / 4090 / ...** GPUs (Optional)

Our 3B model runs efficiently on NVIDIA RTX 3090. However, when using **LMDeploy** as the inference backend, you may encounter compatibility issues on **RTX 3090 / 4090** GPUs — particularly the following error:

```
triton.runtime.errors.OutOfResources: out of resource: shared memory
```

To work around this issue, you can apply the patch below:

```bash
python tools/lmdeploy_patcher.py patch
```

> ⚠️ **Note:** This command will modify LMDeploy's source code in your environment.
> To revert the changes, simply run:

```bash
python tools/lmdeploy_patcher.py restore
```

**Special thanks to [@pineking](https://github.com/pineking) for the solution!**

### Switch inference backend (Optional)

You can switch inference backend to `transformers` following the steps below:

1. Install required dependency (if not already installed):
   ```bash
   # install flash attention 2, you can download the corresponding version from https://github.com/Dao-AILab/flash-attention/releases/
   pip install flash-attn==2.7.4.post1 --no-build-isolation
   ```
2. Open the `model_configs.yaml` file
3. Set `chat_config.backend` to `transformers`
4. Adjust the `batch_size` according to your GPU's memory capacity to ensure stable performance

Example configuration:

```yaml
chat_config:
  backend: transformers
  batch_size: 10  # Adjust based on your available GPU memory
```


## Benchmark Results


Here are the evaluation results of our model on OmniDocBench. MonkeyOCR-3B uses DocLayoutYOLO as the structure detection model, while MonkeyOCR-3B* uses our trained structure detection model with improved Chinese performance.


### 1. The end-to-end evaluation results of different tasks.

<table style="width:100%; border-collapse:collapse; text-align:center;" border="0">
  <thead>
    <tr>
      <th rowspan="2">Model Type</th>
      <th rowspan="2">Methods</th>
      <th colspan="2">Overall Edit↓</th>
      <th colspan="2">Text Edit↓</th>
      <th colspan="2">Formula Edit↓</th>
      <th colspan="2">Formula CDM↑</th>
      <th colspan="2">Table TEDS↑</th>
      <th colspan="2">Table Edit↓</th>
      <th colspan="2">Read Order Edit↓</th>
    </tr>
    <tr>
      <th>EN</th>
      <th>ZH</th>
      <th>EN</th>
      <th>ZH</th>
      <th>EN</th>
      <th>ZH</th>
      <th>EN</th>
      <th>ZH</th>
      <th>EN</th>
      <th>ZH</th>
      <th>EN</th>
      <th>ZH</th>
      <th>EN</th>
      <th>ZH</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <td rowspan="7">Pipeline Tools</td>
      <td>MinerU</td>
      <td>0.150</td>
      <td>0.357</td>
      <td>0.061</td>
      <td>0.215</td>
      <td>0.278</td>
      <td>0.577</td>
      <td>57.3</td>
      <td>42.9</td>
      <td>78.6</td>
      <td>62.1</td>
      <td>0.180</td>
      <td>0.344</td>
      <td><strong>0.079</strong></td>
      <td>0.292</td>
    </tr>
    <tr>
      <td>Marker</td>
      <td>0.336</td>
      <td>0.556</td>
      <td>0.080</td>
      <td>0.315</td>
      <td>0.530</td>
      <td>0.883</td>
      <td>17.6</td>
      <td>11.7</td>
      <td>67.6</td>
      <td>49.2</td>
      <td>0.619</td>
      <td>0.685</td>
      <td>0.114</td>
      <td>0.340</td>
    </tr>
    <tr>
      <td>Mathpix</td>
      <td>0.191</td>
      <td>0.365</td>
      <td>0.105</td>
      <td>0.384</td>
      <td>0.306</td>
      <td><strong>0.454</strong></td>
      <td>62.7</td>
      <td><strong>62.1</strong></td>
      <td>77.0</td>
      <td>67.1</td>
      <td>0.243</td>
      <td>0.320</td>
      <td>0.108</td>
      <td>0.304</td>
    </tr>
    <tr>
      <td>Docling</td>
      <td>0.589</td>
      <td>0.909</td>
      <td>0.416</td>
      <td>0.987</td>
      <td>0.999</td>
      <td>1</td>
      <td>-</td>
      <td>-</td>
      <td>61.3</td>
      <td>25.0</td>
      <td>0.627</td>
      <td>0.810</td>
      <td>0.313</td>
      <td>0.837</td>
    </tr>
    <tr>
      <td>Pix2Text</td>
      <td>0.320</td>
      <td>0.528</td>
      <td>0.138</td>
      <td>0.356</td>
      <td>0.276</td>
      <td>0.611</td>
      <td>78.4</td>
      <td>39.6</td>
      <td>73.6</td>
      <td>66.2</td>
      <td>0.584</td>
      <td>0.645</td>
      <td>0.281</td>
      <td>0.499</td>
    </tr>
    <tr>
      <td>Unstructured</td>
      <td>0.586</td>
      <td>0.716</td>
      <td>0.198</td>
      <td>0.481</td>
      <td>0.999</td>
      <td>1</td>
      <td>-</td>
      <td>-</td>
      <td>0</td>
      <td>0.06</td>
      <td>1</td>
      <td>0.998</td>
      <td>0.145</td>
      <td>0.387</td>
    </tr>
    <tr>
      <td>OpenParse</td>
      <td>0.646</td>
      <td>0.814</td>
      <td>0.681</td>
      <td>0.974</td>
      <td>0.996</td>
      <td>1</td>
      <td>0.11</td>
      <td>0</td>
      <td>64.8</td>
      <td>27.5</td>
      <td>0.284</td>
      <td>0.639</td>
      <td>0.595</td>
      <td>0.641</td>
    </tr>
    <tr>
      <td rowspan="5">Expert VLMs</td>
      <td>GOT-OCR</td>
      <td>0.287</td>
      <td>0.411</td>
      <td>0.189</td>
      <td>0.315</td>
      <td>0.360</td>
      <td>0.528</td>
      <td>74.3</td>
      <td>45.3</td>
      <td>53.2</td>
      <td>47.2</td>
      <td>0.459</td>
      <td>0.520</td>
      <td>0.141</td>
      <td>0.280</td>
    </tr>
    <tr>
      <td>Nougat</td>
      <td>0.452</td>
      <td>0.973</td>
      <td>0.365</td>
      <td>0.998</td>
      <td>0.488</td>
      <td>0.941</td>
      <td>15.1</td>
      <td>16.8</td>
      <td>39.9</td>
      <td>0</td>
      <td>0.572</td>
      <td>1.000</td>
      <td>0.382</td>
      <td>0.954</td>
    </tr>
    <tr>
      <td>Mistral OCR</td>
      <td>0.268</td>
      <td>0.439</td>
      <td>0.072</td>
      <td>0.325</td>
      <td>0.318</td>
      <td>0.495</td>
      <td>64.6</td>
      <td>45.9</td>
      <td>75.8</td>
      <td>63.6</td>
      <td>0.600</td>
      <td>0.650</td>
      <td>0.083</td>
      <td>0.284</td>
    </tr>
    <tr>
      <td>OLMOCR-sglang</td>
      <td>0.326</td>
      <td>0.469</td>
      <td>0.097</td>
      <td>0.293</td>
      <td>0.455</td>
      <td>0.655</td>
      <td>74.3</td>
      <td>43.2</td>
      <td>68.1</td>
      <td>61.3</td>
      <td>0.608</td>
      <td>0.652</td>
      <td>0.145</td>
      <td>0.277</td>
    </tr>
    <tr>
      <td>SmolDocling-256M</td>
      <td>0.493</td>
      <td>0.816</td>
      <td>0.262</td>
      <td>0.838</td>
      <td>0.753</td>
      <td>0.997</td>
      <td>32.1</td>
      <td>0.55</td>
      <td>44.9</td>
      <td>16.5</td>
      <td>0.729</td>
      <td>0.907</td>
      <td>0.227</td>
      <td>0.522</td>
    </tr>
    <tr>
      <td rowspan="3">General VLMs</td>
      <td>GPT4o</td>
      <td>0.233</td>
      <td>0.399</td>
      <td>0.144</td>
      <td>0.409</td>
      <td>0.425</td>
      <td>0.606</td>
      <td>72.8</td>
      <td>42.8</td>
      <td>72.0</td>
      <td>62.9</td>
      <td>0.234</td>
      <td>0.329</td>
      <td>0.128</td>
      <td>0.251</td>
    </tr>
    <tr>
      <td>Qwen2.5-VL-7B</td>
      <td>0.312</td>
      <td>0.406</td>
      <td>0.157</td>
      <td>0.228</td>
      <td>0.351</td>
      <td>0.574</td>
      <td><strong>79.0</strong></td>
      <td>50.2</td>
      <td>76.4</td>
      <td>72.2</td>
      <td>0.588</td>
      <td>0.619</td>
      <td>0.149</td>
      <td>0.203</td>
    </tr>
    <tr>
      <td>InternVL3-8B</td>
      <td>0.314</td>
      <td>0.383</td>
      <td>0.134</td>
      <td>0.218</td>
      <td>0.417</td>
      <td>0.563</td>
      <td>78.3</td>
      <td>49.3</td>
      <td>66.1</td>
      <td>73.1</td>
      <td>0.586</td>
      <td>0.564</td>
      <td>0.118</td>
      <td>0.186</td>
    </tr>
    <tr>
      <td rowspan="2">Mix</td>
      <td>MonkeyOCR-3B <a href="https://huggingface.co/echo840/MonkeyOCR/blob/main/Structure/doclayout_yolo_docstructbench_imgsz1280_2501.pt">[Weight]</a></td>
      <td><strong>0.140</strong></td>
      <td>0.297</td>
      <td><strong>0.058</strong></td>
      <td>0.185</td>
      <td><strong>0.238</strong></td>
      <td>0.506</td>
      <td>78.7</td>
      <td>51.4</td>
      <td><strong>80.2</strong></td>
      <td><strong>77.7</strong></td>
      <td><strong>0.170</strong></td>
      <td><strong>0.253</strong></td>
      <td>0.093</td>
      <td>0.244</td>
    </tr>
    <tr>
      <td>MonkeyOCR-3B* <a href="https://huggingface.co/echo840/MonkeyOCR/blob/main/Structure/layout_zh.pt">[Weight]</a></td>
      <td>0.154</td>
      <td><strong>0.277</strong></td>
      <td>0.073</td>
      <td><strong>0.134</strong></td>
      <td>0.255</td>
      <td>0.529</td>
      <td>78.5</td>
      <td>50.8</td>
      <td>78.2</td>
      <td>76.2</td>
      <td>0.182</td>
      <td>0.262</td>
      <td>0.105</td>
      <td><strong>0.183</strong></td>
    </tr>
  </tbody>
</table>




### 2. The end-to-end text recognition performance across 9 PDF page types.
<table style="width: 100%; border-collapse: collapse; text-align: center;">
  <thead>
    <tr style="border-bottom: 2px solid #000;">
      <th><b>Model Type</b></th>
      <th><b>Models</b></th>
      <th><b>Book</b></th>
      <th><b>Slides</b></th>
      <th><b>Financial Report</b></th>
      <th><b>Textbook</b></th>
      <th><b>Exam Paper</b></th>
      <th><b>Magazine</b></th>
      <th><b>Academic Papers</b></th>
      <th><b>Notes</b></th>
      <th><b>Newspaper</b></th>
      <th><b>Overall</b></th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <td rowspan="3"><b>Pipeline Tools</b></td>
      <td>MinerU</td>
      <td><u>0.055</u></td>
      <td>0.124</td>
      <td><u>0.033</u></td>
      <td><u>0.102</u></td>
      <td><u>0.159</u></td>
      <td><b>0.072</b></td>
      <td><u>0.025</u></td>
      <td>0.984</td>
      <td>0.171</td>
      <td>0.206</td>
    </tr>
    <tr>
      <td>Marker</td>
      <td>0.074</td>
      <td>0.340</td>
      <td>0.089</td>
      <td>0.319</td>
      <td>0.452</td>
      <td>0.153</td>
      <td>0.059</td>
      <td>0.651</td>
      <td>0.192</td>
      <td>0.274</td>
    </tr>
    <tr>
      <td>Mathpix</td>
      <td>0.131</td>
      <td>0.220</td>
      <td>0.202</td>
      <td>0.216</td>
      <td>0.278</td>
      <td>0.147</td>
      <td>0.091</td>
      <td>0.634</td>
      <td>0.690</td>
      <td>0.300</td>
    </tr>
    <tr>
      <td rowspan="2"><b>Expert VLMs</b></td>
      <td>GOT-OCR</td>
      <td>0.111</td>
      <td>0.222</td>
      <td>0.067</td>
      <td>0.132</td>
      <td>0.204</td>
      <td>0.198</td>
      <td>0.179</td>
      <td>0.388</td>
      <td>0.771</td>
      <td>0.267</td>
    </tr>
    <tr>
      <td>Nougat</td>
      <td>0.734</td>
      <td>0.958</td>
      <td>1.000</td>
      <td>0.820</td>
      <td>0.930</td>
      <td>0.830</td>
      <td>0.214</td>
      <td>0.991</td>
      <td>0.871</td>
      <td>0.806</td>
    </tr>
    <tr>
      <td rowspan="3"><b>General VLMs</b></td>
      <td>GPT4o</td>
      <td>0.157</td>
      <td>0.163</td>
      <td>0.348</td>
      <td>0.187</td>
      <td>0.281</td>
      <td>0.173</td>
      <td>0.146</td>
      <td>0.607</td>
      <td>0.751</td>
      <td>0.316</td>
    </tr>
    <tr>
      <td>Qwen2.5-VL-7B</td>
      <td>0.148</td>
      <td><b>0.053</b></td>
      <td>0.111</td>
      <td>0.137</td>
      <td>0.189</td>
      <td>0.117</td>
      <td>0.134</td>
      <td>0.204</td>
      <td>0.706</td>
      <td>0.205</td>
    </tr>
    <tr>
      <td>InternVL3-8B</td>
      <td>0.163</td>
      <td><u>0.056</u></td>
      <td>0.107</td>
      <td>0.109</td>
      <td><b>0.129</b></td>
      <td>0.100</td>
      <td>0.159</td>
      <td><b>0.150</b></td>
      <td>0.681</td>
      <td>0.188</td>
    </tr>
    <tr>
      <td rowspan="2"><b>Mix</b></td>
      <td>MonkeyOCR-3B <a href="https://huggingface.co/echo840/MonkeyOCR/blob/main/Structure/doclayout_yolo_docstructbench_imgsz1280_2501.pt">[Weight]</a></td>
      <td><b>0.046</b></td>
      <td>0.120</td>
      <td><b>0.024</b></td>
      <td><b>0.100</b></td>
      <td><b>0.129</b></td>
      <td><u>0.086</u></td>
      <td><b>0.024</b></td>
      <td>0.643</td>
      <td><b>0.131</b></td>
      <td><u>0.155</u></td>
    </tr>
    <tr>
      <td>MonkeyOCR-3B* <a href="https://huggingface.co/echo840/MonkeyOCR/blob/main/Structure/layout_zh.pt">[Weight]</a></td>
      <td>0.054</td>
      <td>0.203</td>
      <td>0.038</td>
      <td>0.112</td>
      <td>0.138</td>
      <td>0.111</td>
      <td>0.032</td>
      <td><u>0.194</u></td>
      <td><u>0.136</u></td>
      <td><b>0.120</b></td>
    </tr>
  </tbody>
</table>

### 3. Comparing MonkeyOCR with closed-source and extra large open-source VLMs.
<img src="https://v1.ax1x.com/2025/06/05/7jQlj4.png" alt="7jQlj4.png" border="0" />


## Visualization Demo

Get a Quick Hands-On Experience with Our Demo:  http://vlrlabmonkey.xyz:7685

> Our demo is simple and easy to use:
>
> 1. Upload a PDF or image.
> 2. Click “Parse (解析)” to let the model perform structure detection, content recognition, and relationship prediction on the input document. The final output will be a markdown-formatted version of the document.
> 3. Select a prompt and click “Test by prompt” to let the model perform content recognition on the image based on the selected prompt.




### Example for formula document
<img src="https://v1.ax1x.com/2025/06/10/7jVLgB.jpg" alt="7jVLgB.jpg" border="0" />

### Example for table document
<img src="https://v1.ax1x.com/2025/06/11/7jcOaa.png" alt="7jcOaa.png" border="0" />

### Example for newspaper
<img src="https://v1.ax1x.com/2025/06/11/7jcP5V.png" alt="7jcP5V.png" border="0" />

### Example for financial report
<img src="https://v1.ax1x.com/2025/06/11/7jc10I.png" alt="7jc10I.png" border="0" />
<img src="https://v1.ax1x.com/2025/06/11/7jcRCL.png" alt="7jcRCL.png" border="0" />

## Citing MonkeyOCR

If you wish to refer to the baseline results published here, please use the following BibTeX entries:

```BibTeX
@misc{li2025monkeyocrdocumentparsingstructurerecognitionrelation,
      title={MonkeyOCR: Document Parsing with a Structure-Recognition-Relation Triplet Paradigm}, 
      author={Zhang Li and Yuliang Liu and Qiang Liu and Zhiyin Ma and Ziyang Zhang and Shuo Zhang and Zidun Guo and Jiarui Zhang and Xinyu Wang and Xiang Bai},
      year={2025},
      eprint={2506.05218},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2506.05218}, 
}
```



## Acknowledgments
We would like to thank [MinerU](https://github.com/opendatalab/MinerU), [DocLayout-YOLO](https://github.com/opendatalab/DocLayout-YOLO), [PyMuPDF](https://github.com/pymupdf/PyMuPDF), [layoutreader](https://github.com/ppaanngggg/layoutreader), [Qwen2.5-VL](https://github.com/QwenLM/Qwen2.5-VL), [LMDeploy](https://github.com/InternLM/lmdeploy), and [InternVL3](https://github.com/OpenGVLab/InternVL) for providing base code and models, as well as their contributions to this field. We also thank [M6Doc](https://github.com/HCIILAB/M6Doc), [DocLayNet](https://github.com/DS4SD/DocLayNet), [CDLA](https://github.com/buptlihang/CDLA), [D4LA](https://github.com/AlibabaResearch/AdvancedLiterateMachinery), [DocGenome](https://github.com/Alpha-Innovator/DocGenome), [PubTabNet](https://github.com/ibm-aur-nlp/PubTabNet), and [UniMER-1M](https://github.com/opendatalab/UniMERNet) for providing valuable datasets.


## Copyright
Please don’t hesitate to share your valuable feedback — it’s a key motivation that drives us to continuously improve our framework. The current technical report only presents the results of the 3B model. Our model is intended for non-commercial use. If you are interested in larger one, please contact us at [email protected] or [email protected].