File size: 21,098 Bytes
053689a cc29805 053689a ff9a039 541413d 053689a 541413d 053689a 541413d 053689a 541413d 053689a 541413d 053689a 541413d 053689a 541413d 053689a 541413d 053689a 541413d 053689a 541413d 053689a 541413d 053689a 541413d 053689a 541413d 053689a 541413d 053689a 541413d 74277bf 053689a 541413d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 |
---
license: apache-2.0
pipeline_tag: image-text-to-text
library_name: transformers
---
<div align="center" xmlns="http://www.w3.org/1999/html">
<h1 align="center">
MonkeyOCR: Document Parsing with a Structure-Recognition-Relation Triplet Paradigm
</h1>
[](https://arxiv.org/abs/2506.05218)
[](https://huggingface.co/echo840/MonkeyOCR)
[](https://github.com/Yuliang-Liu/MonkeyOCR/issues?q=is%3Aopen+is%3Aissue)
[](https://github.com/Yuliang-Liu/MonkeyOCR/issues?q=is%3Aissue+is%3Aclosed)
[](https://github.com/Yuliang-Liu/MonkeyOCR)
</div>
> **MonkeyOCR: Document Parsing with a Structure-Recognition-Relation Triplet Paradigm**<br>
> Zhang Li, Yuliang Liu, Qiang Liu, Zhiyin Ma, Ziyang Zhang, Shuo Zhang, Zidun Guo, Jiarui Zhang, Xinyu Wang, Xiang Bai <br>
[](https://arxiv.org/abs/2506.05218)
[](https://github.com/Yuliang-Liu/MonkeyOCR)
[](https://huggingface.co/echo840/MonkeyOCR)
[](https://modelscope.cn/models/l1731396519/MonkeyOCR)
[](http://vlrlabmonkey.xyz:7685/)
## Introduction
MonkeyOCR adopts a Structure-Recognition-Relation (SRR) triplet paradigm, which simplifies the multi-tool pipeline of modular approaches while avoiding the inefficiency of using large multimodal models for full-page document processing.
1. Compared with the pipeline-based method MinerU, our approach achieves an average improvement of 5.1% across nine types of Chinese and English documents, including a 15.0% gain on formulas and an 8.6% gain on tables.
2. Compared to end-to-end models, our 3B-parameter model achieves the best average performance on English documents, outperforming models such as Gemini 2.5 Pro and Qwen2.5 VL-72B.
3. For multi-page document parsing, our method reaches a processing speed of 0.84 pages per second, surpassing MinerU (0.65) and Qwen2.5 VL-7B (0.12).
<img src="https://v1.ax1x.com/2025/06/05/7jQ3cm.png" alt="7jQ3cm.png" border="0" />
MonkeyOCR currently does not support photographed documents, but we will continue to improve it in future updates. Stay tuned!
Currently, our model is deployed on a single GPU, so if too many users upload files at the same time, issues like “This application is currently busy” may occur. We're actively working on supporting Ollama and other deployment solutions to ensure a smoother experience for more users. Additionally, please note that the processing time shown on the demo page does not reflect computation time alone—it also includes result uploading and other overhead. During periods of high traffic, this time may be longer. The inference speeds of MonkeyOCR, MinerU, and Qwen2.5 VL-7B were measured on an H800 GPU.
## News
* ```2025.06.05 ``` 🚀 We release MonkeyOCR, which supports the parsing of various types of Chinese and English documents.
## Quick Start
### 1. Install MonkeyOCR
```bash
conda create -n MonkeyOCR python=3.10
conda activate MonkeyOCR
git clone https://github.com/Yuliang-Liu/MonkeyOCR.git
cd MonkeyOCR
# Install pytorch, see https://pytorch.org/get-started/previous-versions/ for your cuda version
pip install torch==2.5.1 torchvision==0.20.1 torchaudio==2.5.1 --index-url https://download.pytorch.org/whl/cu124
pip install -e .
```
### 2. Download Model Weights
Download our model from Huggingface.
```python
pip install huggingface_hub
python tools/download_model.py
```
You can also download our model from ModelScope.
```python
pip install modelscope
python tools/download_model.py -t modelscope
```
### 3. Inference
```bash
# Make sure in MonkeyOCR directory
python parse.py path/to/your.pdf
# or with image as input
pyhton parse.py path/to/your/image
# Specify output path and model configs path
python parse.py path/to/your.pdf -o ./output -c config.yaml
```
#### Output Results
MonkeyOCR generates three types of output files:
1. **Processed Markdown File** (`your.md`): The final parsed document content in markdown format, containing text, formulas, tables, and other structured elements.
2. **Layout Results** (`your_layout.pdf`): The layout results drawed on origin PDF.
2. **Intermediate Block Results** (`your_middle.json`): A JSON file containing detailed information about all detected blocks, including:
- Block coordinates and positions
- Block content and type information
- Relationship information between blocks
These files provide both the final formatted output and detailed intermediate results for further analysis or processing.
### 4. Gradio Demo
```bash
# Prepare your env for gradio
pip install gradio==5.23.3
pip install pdf2image==1.17.0
```
```bash
# Start demo
python demo/demo_gradio.py
```
### Fix **shared memory error** on **RTX 3090 / 4090 / ...** GPUs (Optional)
Our 3B model runs efficiently on NVIDIA RTX 3090. However, when using **LMDeploy** as the inference backend, you may encounter compatibility issues on **RTX 3090 / 4090** GPUs — particularly the following error:
```
triton.runtime.errors.OutOfResources: out of resource: shared memory
```
To work around this issue, you can apply the patch below:
```bash
python tools/lmdeploy_patcher.py patch
```
> ⚠️ **Note:** This command will modify LMDeploy's source code in your environment.
> To revert the changes, simply run:
```bash
python tools/lmdeploy_patcher.py restore
```
**Special thanks to [@pineking](https://github.com/pineking) for the solution!**
### Switch inference backend (Optional)
You can switch inference backend to `transformers` following the steps below:
1. Install required dependency (if not already installed):
```bash
# install flash attention 2, you can download the corresponding version from https://github.com/Dao-AILab/flash-attention/releases/
pip install flash-attn==2.7.4.post1 --no-build-isolation
```
2. Open the `model_configs.yaml` file
3. Set `chat_config.backend` to `transformers`
4. Adjust the `batch_size` according to your GPU's memory capacity to ensure stable performance
Example configuration:
```yaml
chat_config:
backend: transformers
batch_size: 10 # Adjust based on your available GPU memory
```
## Benchmark Results
Here are the evaluation results of our model on OmniDocBench. MonkeyOCR-3B uses DocLayoutYOLO as the structure detection model, while MonkeyOCR-3B* uses our trained structure detection model with improved Chinese performance.
### 1. The end-to-end evaluation results of different tasks.
<table style="width:100%; border-collapse:collapse; text-align:center;" border="0">
<thead>
<tr>
<th rowspan="2">Model Type</th>
<th rowspan="2">Methods</th>
<th colspan="2">Overall Edit↓</th>
<th colspan="2">Text Edit↓</th>
<th colspan="2">Formula Edit↓</th>
<th colspan="2">Formula CDM↑</th>
<th colspan="2">Table TEDS↑</th>
<th colspan="2">Table Edit↓</th>
<th colspan="2">Read Order Edit↓</th>
</tr>
<tr>
<th>EN</th>
<th>ZH</th>
<th>EN</th>
<th>ZH</th>
<th>EN</th>
<th>ZH</th>
<th>EN</th>
<th>ZH</th>
<th>EN</th>
<th>ZH</th>
<th>EN</th>
<th>ZH</th>
<th>EN</th>
<th>ZH</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="7">Pipeline Tools</td>
<td>MinerU</td>
<td>0.150</td>
<td>0.357</td>
<td>0.061</td>
<td>0.215</td>
<td>0.278</td>
<td>0.577</td>
<td>57.3</td>
<td>42.9</td>
<td>78.6</td>
<td>62.1</td>
<td>0.180</td>
<td>0.344</td>
<td><strong>0.079</strong></td>
<td>0.292</td>
</tr>
<tr>
<td>Marker</td>
<td>0.336</td>
<td>0.556</td>
<td>0.080</td>
<td>0.315</td>
<td>0.530</td>
<td>0.883</td>
<td>17.6</td>
<td>11.7</td>
<td>67.6</td>
<td>49.2</td>
<td>0.619</td>
<td>0.685</td>
<td>0.114</td>
<td>0.340</td>
</tr>
<tr>
<td>Mathpix</td>
<td>0.191</td>
<td>0.365</td>
<td>0.105</td>
<td>0.384</td>
<td>0.306</td>
<td><strong>0.454</strong></td>
<td>62.7</td>
<td><strong>62.1</strong></td>
<td>77.0</td>
<td>67.1</td>
<td>0.243</td>
<td>0.320</td>
<td>0.108</td>
<td>0.304</td>
</tr>
<tr>
<td>Docling</td>
<td>0.589</td>
<td>0.909</td>
<td>0.416</td>
<td>0.987</td>
<td>0.999</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>61.3</td>
<td>25.0</td>
<td>0.627</td>
<td>0.810</td>
<td>0.313</td>
<td>0.837</td>
</tr>
<tr>
<td>Pix2Text</td>
<td>0.320</td>
<td>0.528</td>
<td>0.138</td>
<td>0.356</td>
<td>0.276</td>
<td>0.611</td>
<td>78.4</td>
<td>39.6</td>
<td>73.6</td>
<td>66.2</td>
<td>0.584</td>
<td>0.645</td>
<td>0.281</td>
<td>0.499</td>
</tr>
<tr>
<td>Unstructured</td>
<td>0.586</td>
<td>0.716</td>
<td>0.198</td>
<td>0.481</td>
<td>0.999</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>0.06</td>
<td>1</td>
<td>0.998</td>
<td>0.145</td>
<td>0.387</td>
</tr>
<tr>
<td>OpenParse</td>
<td>0.646</td>
<td>0.814</td>
<td>0.681</td>
<td>0.974</td>
<td>0.996</td>
<td>1</td>
<td>0.11</td>
<td>0</td>
<td>64.8</td>
<td>27.5</td>
<td>0.284</td>
<td>0.639</td>
<td>0.595</td>
<td>0.641</td>
</tr>
<tr>
<td rowspan="5">Expert VLMs</td>
<td>GOT-OCR</td>
<td>0.287</td>
<td>0.411</td>
<td>0.189</td>
<td>0.315</td>
<td>0.360</td>
<td>0.528</td>
<td>74.3</td>
<td>45.3</td>
<td>53.2</td>
<td>47.2</td>
<td>0.459</td>
<td>0.520</td>
<td>0.141</td>
<td>0.280</td>
</tr>
<tr>
<td>Nougat</td>
<td>0.452</td>
<td>0.973</td>
<td>0.365</td>
<td>0.998</td>
<td>0.488</td>
<td>0.941</td>
<td>15.1</td>
<td>16.8</td>
<td>39.9</td>
<td>0</td>
<td>0.572</td>
<td>1.000</td>
<td>0.382</td>
<td>0.954</td>
</tr>
<tr>
<td>Mistral OCR</td>
<td>0.268</td>
<td>0.439</td>
<td>0.072</td>
<td>0.325</td>
<td>0.318</td>
<td>0.495</td>
<td>64.6</td>
<td>45.9</td>
<td>75.8</td>
<td>63.6</td>
<td>0.600</td>
<td>0.650</td>
<td>0.083</td>
<td>0.284</td>
</tr>
<tr>
<td>OLMOCR-sglang</td>
<td>0.326</td>
<td>0.469</td>
<td>0.097</td>
<td>0.293</td>
<td>0.455</td>
<td>0.655</td>
<td>74.3</td>
<td>43.2</td>
<td>68.1</td>
<td>61.3</td>
<td>0.608</td>
<td>0.652</td>
<td>0.145</td>
<td>0.277</td>
</tr>
<tr>
<td>SmolDocling-256M</td>
<td>0.493</td>
<td>0.816</td>
<td>0.262</td>
<td>0.838</td>
<td>0.753</td>
<td>0.997</td>
<td>32.1</td>
<td>0.55</td>
<td>44.9</td>
<td>16.5</td>
<td>0.729</td>
<td>0.907</td>
<td>0.227</td>
<td>0.522</td>
</tr>
<tr>
<td rowspan="3">General VLMs</td>
<td>GPT4o</td>
<td>0.233</td>
<td>0.399</td>
<td>0.144</td>
<td>0.409</td>
<td>0.425</td>
<td>0.606</td>
<td>72.8</td>
<td>42.8</td>
<td>72.0</td>
<td>62.9</td>
<td>0.234</td>
<td>0.329</td>
<td>0.128</td>
<td>0.251</td>
</tr>
<tr>
<td>Qwen2.5-VL-7B</td>
<td>0.312</td>
<td>0.406</td>
<td>0.157</td>
<td>0.228</td>
<td>0.351</td>
<td>0.574</td>
<td><strong>79.0</strong></td>
<td>50.2</td>
<td>76.4</td>
<td>72.2</td>
<td>0.588</td>
<td>0.619</td>
<td>0.149</td>
<td>0.203</td>
</tr>
<tr>
<td>InternVL3-8B</td>
<td>0.314</td>
<td>0.383</td>
<td>0.134</td>
<td>0.218</td>
<td>0.417</td>
<td>0.563</td>
<td>78.3</td>
<td>49.3</td>
<td>66.1</td>
<td>73.1</td>
<td>0.586</td>
<td>0.564</td>
<td>0.118</td>
<td>0.186</td>
</tr>
<tr>
<td rowspan="2">Mix</td>
<td>MonkeyOCR-3B <a href="https://huggingface.co/echo840/MonkeyOCR/blob/main/Structure/doclayout_yolo_docstructbench_imgsz1280_2501.pt">[Weight]</a></td>
<td><strong>0.140</strong></td>
<td>0.297</td>
<td><strong>0.058</strong></td>
<td>0.185</td>
<td><strong>0.238</strong></td>
<td>0.506</td>
<td>78.7</td>
<td>51.4</td>
<td><strong>80.2</strong></td>
<td><strong>77.7</strong></td>
<td><strong>0.170</strong></td>
<td><strong>0.253</strong></td>
<td>0.093</td>
<td>0.244</td>
</tr>
<tr>
<td>MonkeyOCR-3B* <a href="https://huggingface.co/echo840/MonkeyOCR/blob/main/Structure/layout_zh.pt">[Weight]</a></td>
<td>0.154</td>
<td><strong>0.277</strong></td>
<td>0.073</td>
<td><strong>0.134</strong></td>
<td>0.255</td>
<td>0.529</td>
<td>78.5</td>
<td>50.8</td>
<td>78.2</td>
<td>76.2</td>
<td>0.182</td>
<td>0.262</td>
<td>0.105</td>
<td><strong>0.183</strong></td>
</tr>
</tbody>
</table>
### 2. The end-to-end text recognition performance across 9 PDF page types.
<table style="width: 100%; border-collapse: collapse; text-align: center;">
<thead>
<tr style="border-bottom: 2px solid #000;">
<th><b>Model Type</b></th>
<th><b>Models</b></th>
<th><b>Book</b></th>
<th><b>Slides</b></th>
<th><b>Financial Report</b></th>
<th><b>Textbook</b></th>
<th><b>Exam Paper</b></th>
<th><b>Magazine</b></th>
<th><b>Academic Papers</b></th>
<th><b>Notes</b></th>
<th><b>Newspaper</b></th>
<th><b>Overall</b></th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="3"><b>Pipeline Tools</b></td>
<td>MinerU</td>
<td><u>0.055</u></td>
<td>0.124</td>
<td><u>0.033</u></td>
<td><u>0.102</u></td>
<td><u>0.159</u></td>
<td><b>0.072</b></td>
<td><u>0.025</u></td>
<td>0.984</td>
<td>0.171</td>
<td>0.206</td>
</tr>
<tr>
<td>Marker</td>
<td>0.074</td>
<td>0.340</td>
<td>0.089</td>
<td>0.319</td>
<td>0.452</td>
<td>0.153</td>
<td>0.059</td>
<td>0.651</td>
<td>0.192</td>
<td>0.274</td>
</tr>
<tr>
<td>Mathpix</td>
<td>0.131</td>
<td>0.220</td>
<td>0.202</td>
<td>0.216</td>
<td>0.278</td>
<td>0.147</td>
<td>0.091</td>
<td>0.634</td>
<td>0.690</td>
<td>0.300</td>
</tr>
<tr>
<td rowspan="2"><b>Expert VLMs</b></td>
<td>GOT-OCR</td>
<td>0.111</td>
<td>0.222</td>
<td>0.067</td>
<td>0.132</td>
<td>0.204</td>
<td>0.198</td>
<td>0.179</td>
<td>0.388</td>
<td>0.771</td>
<td>0.267</td>
</tr>
<tr>
<td>Nougat</td>
<td>0.734</td>
<td>0.958</td>
<td>1.000</td>
<td>0.820</td>
<td>0.930</td>
<td>0.830</td>
<td>0.214</td>
<td>0.991</td>
<td>0.871</td>
<td>0.806</td>
</tr>
<tr>
<td rowspan="3"><b>General VLMs</b></td>
<td>GPT4o</td>
<td>0.157</td>
<td>0.163</td>
<td>0.348</td>
<td>0.187</td>
<td>0.281</td>
<td>0.173</td>
<td>0.146</td>
<td>0.607</td>
<td>0.751</td>
<td>0.316</td>
</tr>
<tr>
<td>Qwen2.5-VL-7B</td>
<td>0.148</td>
<td><b>0.053</b></td>
<td>0.111</td>
<td>0.137</td>
<td>0.189</td>
<td>0.117</td>
<td>0.134</td>
<td>0.204</td>
<td>0.706</td>
<td>0.205</td>
</tr>
<tr>
<td>InternVL3-8B</td>
<td>0.163</td>
<td><u>0.056</u></td>
<td>0.107</td>
<td>0.109</td>
<td><b>0.129</b></td>
<td>0.100</td>
<td>0.159</td>
<td><b>0.150</b></td>
<td>0.681</td>
<td>0.188</td>
</tr>
<tr>
<td rowspan="2"><b>Mix</b></td>
<td>MonkeyOCR-3B <a href="https://huggingface.co/echo840/MonkeyOCR/blob/main/Structure/doclayout_yolo_docstructbench_imgsz1280_2501.pt">[Weight]</a></td>
<td><b>0.046</b></td>
<td>0.120</td>
<td><b>0.024</b></td>
<td><b>0.100</b></td>
<td><b>0.129</b></td>
<td><u>0.086</u></td>
<td><b>0.024</b></td>
<td>0.643</td>
<td><b>0.131</b></td>
<td><u>0.155</u></td>
</tr>
<tr>
<td>MonkeyOCR-3B* <a href="https://huggingface.co/echo840/MonkeyOCR/blob/main/Structure/layout_zh.pt">[Weight]</a></td>
<td>0.054</td>
<td>0.203</td>
<td>0.038</td>
<td>0.112</td>
<td>0.138</td>
<td>0.111</td>
<td>0.032</td>
<td><u>0.194</u></td>
<td><u>0.136</u></td>
<td><b>0.120</b></td>
</tr>
</tbody>
</table>
### 3. Comparing MonkeyOCR with closed-source and extra large open-source VLMs.
<img src="https://v1.ax1x.com/2025/06/05/7jQlj4.png" alt="7jQlj4.png" border="0" />
## Visualization Demo
Get a Quick Hands-On Experience with Our Demo: http://vlrlabmonkey.xyz:7685
> Our demo is simple and easy to use:
>
> 1. Upload a PDF or image.
> 2. Click “Parse (解析)” to let the model perform structure detection, content recognition, and relationship prediction on the input document. The final output will be a markdown-formatted version of the document.
> 3. Select a prompt and click “Test by prompt” to let the model perform content recognition on the image based on the selected prompt.
### Example for formula document
<img src="https://v1.ax1x.com/2025/06/10/7jVLgB.jpg" alt="7jVLgB.jpg" border="0" />
### Example for table document
<img src="https://v1.ax1x.com/2025/06/11/7jcOaa.png" alt="7jcOaa.png" border="0" />
### Example for newspaper
<img src="https://v1.ax1x.com/2025/06/11/7jcP5V.png" alt="7jcP5V.png" border="0" />
### Example for financial report
<img src="https://v1.ax1x.com/2025/06/11/7jc10I.png" alt="7jc10I.png" border="0" />
<img src="https://v1.ax1x.com/2025/06/11/7jcRCL.png" alt="7jcRCL.png" border="0" />
## Citing MonkeyOCR
If you wish to refer to the baseline results published here, please use the following BibTeX entries:
```BibTeX
@misc{li2025monkeyocrdocumentparsingstructurerecognitionrelation,
title={MonkeyOCR: Document Parsing with a Structure-Recognition-Relation Triplet Paradigm},
author={Zhang Li and Yuliang Liu and Qiang Liu and Zhiyin Ma and Ziyang Zhang and Shuo Zhang and Zidun Guo and Jiarui Zhang and Xinyu Wang and Xiang Bai},
year={2025},
eprint={2506.05218},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2506.05218},
}
```
## Acknowledgments
We would like to thank [MinerU](https://github.com/opendatalab/MinerU), [DocLayout-YOLO](https://github.com/opendatalab/DocLayout-YOLO), [PyMuPDF](https://github.com/pymupdf/PyMuPDF), [layoutreader](https://github.com/ppaanngggg/layoutreader), [Qwen2.5-VL](https://github.com/QwenLM/Qwen2.5-VL), [LMDeploy](https://github.com/InternLM/lmdeploy), and [InternVL3](https://github.com/OpenGVLab/InternVL) for providing base code and models, as well as their contributions to this field. We also thank [M6Doc](https://github.com/HCIILAB/M6Doc), [DocLayNet](https://github.com/DS4SD/DocLayNet), [CDLA](https://github.com/buptlihang/CDLA), [D4LA](https://github.com/AlibabaResearch/AdvancedLiterateMachinery), [DocGenome](https://github.com/Alpha-Innovator/DocGenome), [PubTabNet](https://github.com/ibm-aur-nlp/PubTabNet), and [UniMER-1M](https://github.com/opendatalab/UniMERNet) for providing valuable datasets.
## Copyright
Please don’t hesitate to share your valuable feedback — it’s a key motivation that drives us to continuously improve our framework. The current technical report only presents the results of the 3B model. Our model is intended for non-commercial use. If you are interested in larger one, please contact us at [email protected] or [email protected]. |