echo840 commited on
Commit
f8312b0
·
verified ·
1 Parent(s): e26f382

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ Recognition/tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,708 +1,3 @@
1
- ---
2
- pipeline_tag: image-text-to-text
3
- library_name: monkeyocr
4
- language:
5
- - zh
6
- - en
7
- tags:
8
- - OCR
9
- ---
10
- <div align="center" xmlns="http://www.w3.org/1999/html">
11
- <h1 align="center">
12
- MonkeyOCR: Document Parsing with a Structure-Recognition-Relation Triplet Paradigm
13
- </h1>
14
-
15
- [![arXiv](https://img.shields.io/badge/Arxiv-MonkeyOCR-b31b1b.svg?logo=arXiv)](https://arxiv.org/abs/2506.05218)
16
- [![HuggingFace](https://img.shields.io/badge/HuggingFace%20Weights-black.svg?logo=HuggingFace)](https://huggingface.co/echo840/MonkeyOCR)
17
- [![GitHub issues](https://img.shields.io/github/issues/Yuliang-Liu/MonkeyOCR?color=critical&label=Issues)](https://github.com/Yuliang-Liu/MonkeyOCR/issues?q=is%3Aopen+is%3Aissue)
18
- [![GitHub closed issues](https://img.shields.io/github/issues-closed/Yuliang-Liu/MonkeyOCR?color=success&label=Issues)](https://github.com/Yuliang-Liu/MonkeyOCR/issues?q=is%3Aissue+is%3Aclosed)
19
- [![GitHub views](https://komarev.com/ghpvc/?username=Yuliang-Liu&repo=MonkeyOCR&color=brightgreen&label=Views)](https://github.com/Yuliang-Liu/MonkeyOCR)
20
- </div>
21
-
22
-
23
- > **MonkeyOCR: Document Parsing with a Structure-Recognition-Relation Triplet Paradigm**<br>
24
- > Zhang Li, Yuliang Liu, Qiang Liu, Zhiyin Ma, Ziyang Zhang, Shuo Zhang, Zidun Guo, Jiarui Zhang, Xinyu Wang, Xiang Bai <br>
25
- [![arXiv](https://img.shields.io/badge/Arxiv-b31b1b.svg?logo=arXiv)](https://arxiv.org/abs/2506.05218)
26
- [![Source_code](https://img.shields.io/badge/Code-Available-white)](https://github.com/Yuliang-Liu/MonkeyOCR)
27
- [![Model Weight](https://img.shields.io/badge/HuggingFace-gray)](https://huggingface.co/echo840/MonkeyOCR)
28
- [![Model Weight](https://img.shields.io/badge/ModelScope-green)](https://modelscope.cn/models/l1731396519/MonkeyOCR)
29
- [![Demo](https://img.shields.io/badge/Demo-blue)](http://vlrlabmonkey.xyz:7685/)
30
-
31
-
32
-
33
- ## Introduction
34
- MonkeyOCR adopts a Structure-Recognition-Relation (SRR) triplet paradigm, which simplifies the multi-tool pipeline of modular approaches while avoiding the inefficiency of using large multimodal models for full-page document processing.
35
-
36
- 1. Compared with the pipeline-based method MinerU, our approach achieves an average improvement of 5.1% across nine types of Chinese and English documents, including a 15.0% gain on formulas and an 8.6% gain on tables.
37
- 2. Compared to end-to-end models, our 3B-parameter model achieves the best average performance on English documents, outperforming models such as Gemini 2.5 Pro and Qwen2.5 VL-72B.
38
- 3. For multi-page document parsing, our method reaches a processing speed of 0.84 pages per second, surpassing MinerU (0.65) and Qwen2.5 VL-7B (0.12).
39
-
40
- <img src="https://v1.ax1x.com/2025/06/05/7jQ3cm.png" alt="7jQ3cm.png" border="0" />
41
-
42
- MonkeyOCR currently does not support photographed documents, but we will continue to improve it in future updates. Stay tuned!
43
- Currently, our model is deployed on a single GPU, so if too many users upload files at the same time, issues like “This application is currently busy” may occur. We're actively working on supporting Ollama and other deployment solutions to ensure a smoother experience for more users. Additionally, please note that the processing time shown on the demo page does not reflect computation time alone—it also includes result uploading and other overhead. During periods of high traffic, this time may be longer. The inference speeds of MonkeyOCR, MinerU, and Qwen2.5 VL-7B were measured on an H800 GPU.
44
-
45
- 🚀🚀🚀 Chinese Video Tutorial (Thanks to [leo009](https://huggingface.co/leo009) for sharing!)
46
-
47
- https://youtu.be/T9oaqp-IaZ0
48
-
49
- https://www.bilibili.com/video/BV1sxKhztEx1/
50
-
51
-
52
- ## News
53
- * ```2025.06.05 ``` 🚀 We release MonkeyOCR, which supports the parsing of various types of Chinese and English documents.
54
-
55
-
56
- ## Quick Start
57
-
58
- ### 1. Install MonkeyOCR
59
- ```bash
60
- conda create -n MonkeyOCR python=3.10
61
- conda activate MonkeyOCR
62
-
63
- git clone https://github.com/Yuliang-Liu/MonkeyOCR.git
64
- cd MonkeyOCR
65
-
66
- # Install pytorch, see https://pytorch.org/get-started/previous-versions/ for your cuda version
67
- pip install torch==2.5.1 torchvision==0.20.1 torchaudio==2.5.1 --index-url https://download.pytorch.org/whl/cu124
68
- pip install -e .
69
- ```
70
- ### 2. Download Model Weights
71
- Download our model from Huggingface.
72
- ```python
73
- pip install huggingface_hub
74
-
75
- python tools/download_model.py
76
- ```
77
- You can also download our model from ModelScope.
78
-
79
- ```python
80
- pip install modelscope
81
-
82
- python tools/download_model.py -t modelscope
83
- ```
84
- ### 3. Inference
85
- ```bash
86
- # Make sure in MonkeyOCR directory
87
- python parse.py path/to/your.pdf
88
- # or with image as input
89
- pyhton parse.py path/to/your/image
90
- # Specify output path and model configs path
91
- python parse.py path/to/your.pdf -o ./output -c config.yaml
92
- ```
93
-
94
- #### Output Results
95
- MonkeyOCR generates three types of output files:
96
-
97
- 1. **Processed Markdown File** (`your.md`): The final parsed document content in markdown format, containing text, formulas, tables, and other structured elements.
98
- 2. **Layout Results** (`your_layout.pdf`): The layout results drawed on origin PDF.
99
- 2. **Intermediate Block Results** (`your_middle.json`): A JSON file containing detailed information about all detected blocks, including:
100
- - Block coordinates and positions
101
- - Block content and type information
102
- - Relationship information between blocks
103
-
104
- These files provide both the final formatted output and detailed intermediate results for further analysis or processing.
105
-
106
- ### 4. Gradio Demo
107
- ```bash
108
- # Prepare your env for gradio
109
- pip install gradio==5.23.3
110
- pip install pdf2image==1.17.0
111
- ```
112
- ```bash
113
- # Start demo
114
- python demo/demo_gradio.py
115
- ```
116
- ### Fix **shared memory error** on **RTX 3090 / 4090 / ...** GPUs (Optional)
117
-
118
- Our 3B model runs efficiently on NVIDIA RTX 3090. However, when using **LMDeploy** as the inference backend, you may encounter compatibility issues on **RTX 3090 / 4090** GPUs — particularly the following error:
119
-
120
- ```
121
- triton.runtime.errors.OutOfResources: out of resource: shared memory
122
- ```
123
-
124
- To work around this issue, you can apply the patch below:
125
-
126
- ```bash
127
- python tools/lmdeploy_patcher.py patch
128
- ```
129
-
130
- > ⚠️ **Note:** This command will modify LMDeploy's source code in your environment.
131
- > To revert the changes, simply run:
132
-
133
- ```bash
134
- python tools/lmdeploy_patcher.py restore
135
- ```
136
-
137
- **Special thanks to [@pineking](https://github.com/pineking) for the solution!**
138
-
139
- ### Switch inference backend (Optional)
140
-
141
- You can switch inference backend to `transformers` following the steps below:
142
-
143
- 1. Install required dependency (if not already installed):
144
- ```bash
145
- # install flash attention 2, you can download the corresponding version from https://github.com/Dao-AILab/flash-attention/releases/
146
- pip install flash-attn==2.7.4.post1 --no-build-isolation
147
- ```
148
- 2. Open the `model_configs.yaml` file
149
- 3. Set `chat_config.backend` to `transformers`
150
- 4. Adjust the `batch_size` according to your GPU's memory capacity to ensure stable performance
151
-
152
- Example configuration:
153
-
154
- ```yaml
155
- chat_config:
156
- backend: transformers
157
- batch_size: 10 # Adjust based on your available GPU memory
158
- ```
159
-
160
-
161
- ## Benchmark Results
162
-
163
-
164
- Here are the evaluation results of our model on OmniDocBench. MonkeyOCR-3B uses DocLayoutYOLO as the structure detection model, while MonkeyOCR-3B* uses our trained structure detection model with improved Chinese performance.
165
-
166
-
167
- ### 1. The end-to-end evaluation results of different tasks.
168
-
169
- <table style="width:100%; border-collapse:collapse; text-align:center;" border="0">
170
- <thead>
171
- <tr>
172
- <th rowspan="2">Model Type</th>
173
- <th rowspan="2">Methods</th>
174
- <th colspan="2">Overall Edit↓</th>
175
- <th colspan="2">Text Edit↓</th>
176
- <th colspan="2">Formula Edit↓</th>
177
- <th colspan="2">Formula CDM↑</th>
178
- <th colspan="2">Table TEDS↑</th>
179
- <th colspan="2">Table Edit↓</th>
180
- <th colspan="2">Read Order Edit↓</th>
181
- </tr>
182
- <tr>
183
- <th>EN</th>
184
- <th>ZH</th>
185
- <th>EN</th>
186
- <th>ZH</th>
187
- <th>EN</th>
188
- <th>ZH</th>
189
- <th>EN</th>
190
- <th>ZH</th>
191
- <th>EN</th>
192
- <th>ZH</th>
193
- <th>EN</th>
194
- <th>ZH</th>
195
- <th>EN</th>
196
- <th>ZH</th>
197
- </tr>
198
- </thead>
199
- <tbody>
200
- <tr>
201
- <td rowspan="7">Pipeline Tools</td>
202
- <td>MinerU</td>
203
- <td>0.150</td>
204
- <td>0.357</td>
205
- <td>0.061</td>
206
- <td>0.215</td>
207
- <td>0.278</td>
208
- <td>0.577</td>
209
- <td>57.3</td>
210
- <td>42.9</td>
211
- <td>78.6</td>
212
- <td>62.1</td>
213
- <td>0.180</td>
214
- <td>0.344</td>
215
- <td><strong>0.079</strong></td>
216
- <td>0.292</td>
217
- </tr>
218
- <tr>
219
- <td>Marker</td>
220
- <td>0.336</td>
221
- <td>0.556</td>
222
- <td>0.080</td>
223
- <td>0.315</td>
224
- <td>0.530</td>
225
- <td>0.883</td>
226
- <td>17.6</td>
227
- <td>11.7</td>
228
- <td>67.6</td>
229
- <td>49.2</td>
230
- <td>0.619</td>
231
- <td>0.685</td>
232
- <td>0.114</td>
233
- <td>0.340</td>
234
- </tr>
235
- <tr>
236
- <td>Mathpix</td>
237
- <td>0.191</td>
238
- <td>0.365</td>
239
- <td>0.105</td>
240
- <td>0.384</td>
241
- <td>0.306</td>
242
- <td><strong>0.454</strong></td>
243
- <td>62.7</td>
244
- <td><strong>62.1</strong></td>
245
- <td>77.0</td>
246
- <td>67.1</td>
247
- <td>0.243</td>
248
- <td>0.320</td>
249
- <td>0.108</td>
250
- <td>0.304</td>
251
- </tr>
252
- <tr>
253
- <td>Docling</td>
254
- <td>0.589</td>
255
- <td>0.909</td>
256
- <td>0.416</td>
257
- <td>0.987</td>
258
- <td>0.999</td>
259
- <td>1</td>
260
- <td>-</td>
261
- <td>-</td>
262
- <td>61.3</td>
263
- <td>25.0</td>
264
- <td>0.627</td>
265
- <td>0.810</td>
266
- <td>0.313</td>
267
- <td>0.837</td>
268
- </tr>
269
- <tr>
270
- <td>Pix2Text</td>
271
- <td>0.320</td>
272
- <td>0.528</td>
273
- <td>0.138</td>
274
- <td>0.356</td>
275
- <td>0.276</td>
276
- <td>0.611</td>
277
- <td>78.4</td>
278
- <td>39.6</td>
279
- <td>73.6</td>
280
- <td>66.2</td>
281
- <td>0.584</td>
282
- <td>0.645</td>
283
- <td>0.281</td>
284
- <td>0.499</td>
285
- </tr>
286
- <tr>
287
- <td>Unstructured</td>
288
- <td>0.586</td>
289
- <td>0.716</td>
290
- <td>0.198</td>
291
- <td>0.481</td>
292
- <td>0.999</td>
293
- <td>1</td>
294
- <td>-</td>
295
- <td>-</td>
296
- <td>0</td>
297
- <td>0.06</td>
298
- <td>1</td>
299
- <td>0.998</td>
300
- <td>0.145</td>
301
- <td>0.387</td>
302
- </tr>
303
- <tr>
304
- <td>OpenParse</td>
305
- <td>0.646</td>
306
- <td>0.814</td>
307
- <td>0.681</td>
308
- <td>0.974</td>
309
- <td>0.996</td>
310
- <td>1</td>
311
- <td>0.11</td>
312
- <td>0</td>
313
- <td>64.8</td>
314
- <td>27.5</td>
315
- <td>0.284</td>
316
- <td>0.639</td>
317
- <td>0.595</td>
318
- <td>0.641</td>
319
- </tr>
320
- <tr>
321
- <td rowspan="5">Expert VLMs</td>
322
- <td>GOT-OCR</td>
323
- <td>0.287</td>
324
- <td>0.411</td>
325
- <td>0.189</td>
326
- <td>0.315</td>
327
- <td>0.360</td>
328
- <td>0.528</td>
329
- <td>74.3</td>
330
- <td>45.3</td>
331
- <td>53.2</td>
332
- <td>47.2</td>
333
- <td>0.459</td>
334
- <td>0.520</td>
335
- <td>0.141</td>
336
- <td>0.280</td>
337
- </tr>
338
- <tr>
339
- <td>Nougat</td>
340
- <td>0.452</td>
341
- <td>0.973</td>
342
- <td>0.365</td>
343
- <td>0.998</td>
344
- <td>0.488</td>
345
- <td>0.941</td>
346
- <td>15.1</td>
347
- <td>16.8</td>
348
- <td>39.9</td>
349
- <td>0</td>
350
- <td>0.572</td>
351
- <td>1.000</td>
352
- <td>0.382</td>
353
- <td>0.954</td>
354
- </tr>
355
- <tr>
356
- <td>Mistral OCR</td>
357
- <td>0.268</td>
358
- <td>0.439</td>
359
- <td>0.072</td>
360
- <td>0.325</td>
361
- <td>0.318</td>
362
- <td>0.495</td>
363
- <td>64.6</td>
364
- <td>45.9</td>
365
- <td>75.8</td>
366
- <td>63.6</td>
367
- <td>0.600</td>
368
- <td>0.650</td>
369
- <td>0.083</td>
370
- <td>0.284</td>
371
- </tr>
372
- <tr>
373
- <td>OLMOCR-sglang</td>
374
- <td>0.326</td>
375
- <td>0.469</td>
376
- <td>0.097</td>
377
- <td>0.293</td>
378
- <td>0.455</td>
379
- <td>0.655</td>
380
- <td>74.3</td>
381
- <td>43.2</td>
382
- <td>68.1</td>
383
- <td>61.3</td>
384
- <td>0.608</td>
385
- <td>0.652</td>
386
- <td>0.145</td>
387
- <td>0.277</td>
388
- </tr>
389
- <tr>
390
- <td>SmolDocling-256M</td>
391
- <td>0.493</td>
392
- <td>0.816</td>
393
- <td>0.262</td>
394
- <td>0.838</td>
395
- <td>0.753</td>
396
- <td>0.997</td>
397
- <td>32.1</td>
398
- <td>0.55</td>
399
- <td>44.9</td>
400
- <td>16.5</td>
401
- <td>0.729</td>
402
- <td>0.907</td>
403
- <td>0.227</td>
404
- <td>0.522</td>
405
- </tr>
406
- <tr>
407
- <td rowspan="3">General VLMs</td>
408
- <td>GPT4o</td>
409
- <td>0.233</td>
410
- <td>0.399</td>
411
- <td>0.144</td>
412
- <td>0.409</td>
413
- <td>0.425</td>
414
- <td>0.606</td>
415
- <td>72.8</td>
416
- <td>42.8</td>
417
- <td>72.0</td>
418
- <td>62.9</td>
419
- <td>0.234</td>
420
- <td>0.329</td>
421
- <td>0.128</td>
422
- <td>0.251</td>
423
- </tr>
424
- <tr>
425
- <td>Qwen2.5-VL-7B</td>
426
- <td>0.312</td>
427
- <td>0.406</td>
428
- <td>0.157</td>
429
- <td>0.228</td>
430
- <td>0.351</td>
431
- <td>0.574</td>
432
- <td><strong>79.0</strong></td>
433
- <td>50.2</td>
434
- <td>76.4</td>
435
- <td>72.2</td>
436
- <td>0.588</td>
437
- <td>0.619</td>
438
- <td>0.149</td>
439
- <td>0.203</td>
440
- </tr>
441
- <tr>
442
- <td>InternVL3-8B</td>
443
- <td>0.314</td>
444
- <td>0.383</td>
445
- <td>0.134</td>
446
- <td>0.218</td>
447
- <td>0.417</td>
448
- <td>0.563</td>
449
- <td>78.3</td>
450
- <td>49.3</td>
451
- <td>66.1</td>
452
- <td>73.1</td>
453
- <td>0.586</td>
454
- <td>0.564</td>
455
- <td>0.118</td>
456
- <td>0.186</td>
457
- </tr>
458
- <tr>
459
- <td rowspan="2">Mix</td>
460
- <td>MonkeyOCR-3B <a href="https://huggingface.co/echo840/MonkeyOCR/blob/main/Structure/doclayout_yolo_docstructbench_imgsz1280_2501.pt">[Weight]</a></td>
461
- <td><strong>0.140</strong></td>
462
- <td>0.297</td>
463
- <td><strong>0.058</strong></td>
464
- <td>0.185</td>
465
- <td><strong>0.238</strong></td>
466
- <td>0.506</td>
467
- <td>78.7</td>
468
- <td>51.4</td>
469
- <td><strong>80.2</strong></td>
470
- <td><strong>77.7</strong></td>
471
- <td><strong>0.170</strong></td>
472
- <td><strong>0.253</strong></td>
473
- <td>0.093</td>
474
- <td>0.244</td>
475
- </tr>
476
- <tr>
477
- <td>MonkeyOCR-3B* <a href="https://huggingface.co/echo840/MonkeyOCR/blob/main/Structure/layout_zh.pt">[Weight]</a></td>
478
- <td>0.154</td>
479
- <td><strong>0.277</strong></td>
480
- <td>0.073</td>
481
- <td><strong>0.134</strong></td>
482
- <td>0.255</td>
483
- <td>0.529</td>
484
- <td>78.5</td>
485
- <td>50.8</td>
486
- <td>78.2</td>
487
- <td>76.2</td>
488
- <td>0.182</td>
489
- <td>0.262</td>
490
- <td>0.105</td>
491
- <td><strong>0.183</strong></td>
492
- </tr>
493
- </tbody>
494
- </table>
495
-
496
-
497
-
498
-
499
- ### 2. The end-to-end text recognition performance across 9 PDF page types.
500
- <table style="width: 100%; border-collapse: collapse; text-align: center;">
501
- <thead>
502
- <tr style="border-bottom: 2px solid #000;">
503
- <th><b>Model Type</b></th>
504
- <th><b>Models</b></th>
505
- <th><b>Book</b></th>
506
- <th><b>Slides</b></th>
507
- <th><b>Financial Report</b></th>
508
- <th><b>Textbook</b></th>
509
- <th><b>Exam Paper</b></th>
510
- <th><b>Magazine</b></th>
511
- <th><b>Academic Papers</b></th>
512
- <th><b>Notes</b></th>
513
- <th><b>Newspaper</b></th>
514
- <th><b>Overall</b></th>
515
- </tr>
516
- </thead>
517
- <tbody>
518
- <tr>
519
- <td rowspan="3"><b>Pipeline Tools</b></td>
520
- <td>MinerU</td>
521
- <td><u>0.055</u></td>
522
- <td>0.124</td>
523
- <td><u>0.033</u></td>
524
- <td><u>0.102</u></td>
525
- <td><u>0.159</u></td>
526
- <td><b>0.072</b></td>
527
- <td><u>0.025</u></td>
528
- <td>0.984</td>
529
- <td>0.171</td>
530
- <td>0.206</td>
531
- </tr>
532
- <tr>
533
- <td>Marker</td>
534
- <td>0.074</td>
535
- <td>0.340</td>
536
- <td>0.089</td>
537
- <td>0.319</td>
538
- <td>0.452</td>
539
- <td>0.153</td>
540
- <td>0.059</td>
541
- <td>0.651</td>
542
- <td>0.192</td>
543
- <td>0.274</td>
544
- </tr>
545
- <tr>
546
- <td>Mathpix</td>
547
- <td>0.131</td>
548
- <td>0.220</td>
549
- <td>0.202</td>
550
- <td>0.216</td>
551
- <td>0.278</td>
552
- <td>0.147</td>
553
- <td>0.091</td>
554
- <td>0.634</td>
555
- <td>0.690</td>
556
- <td>0.300</td>
557
- </tr>
558
- <tr>
559
- <td rowspan="2"><b>Expert VLMs</b></td>
560
- <td>GOT-OCR</td>
561
- <td>0.111</td>
562
- <td>0.222</td>
563
- <td>0.067</td>
564
- <td>0.132</td>
565
- <td>0.204</td>
566
- <td>0.198</td>
567
- <td>0.179</td>
568
- <td>0.388</td>
569
- <td>0.771</td>
570
- <td>0.267</td>
571
- </tr>
572
- <tr>
573
- <td>Nougat</td>
574
- <td>0.734</td>
575
- <td>0.958</td>
576
- <td>1.000</td>
577
- <td>0.820</td>
578
- <td>0.930</td>
579
- <td>0.830</td>
580
- <td>0.214</td>
581
- <td>0.991</td>
582
- <td>0.871</td>
583
- <td>0.806</td>
584
- </tr>
585
- <tr>
586
- <td rowspan="3"><b>General VLMs</b></td>
587
- <td>GPT4o</td>
588
- <td>0.157</td>
589
- <td>0.163</td>
590
- <td>0.348</td>
591
- <td>0.187</td>
592
- <td>0.281</td>
593
- <td>0.173</td>
594
- <td>0.146</td>
595
- <td>0.607</td>
596
- <td>0.751</td>
597
- <td>0.316</td>
598
- </tr>
599
- <tr>
600
- <td>Qwen2.5-VL-7B</td>
601
- <td>0.148</td>
602
- <td><b>0.053</b></td>
603
- <td>0.111</td>
604
- <td>0.137</td>
605
- <td>0.189</td>
606
- <td>0.117</td>
607
- <td>0.134</td>
608
- <td>0.204</td>
609
- <td>0.706</td>
610
- <td>0.205</td>
611
- </tr>
612
- <tr>
613
- <td>InternVL3-8B</td>
614
- <td>0.163</td>
615
- <td><u>0.056</u></td>
616
- <td>0.107</td>
617
- <td>0.109</td>
618
- <td><b>0.129</b></td>
619
- <td>0.100</td>
620
- <td>0.159</td>
621
- <td><b>0.150</b></td>
622
- <td>0.681</td>
623
- <td>0.188</td>
624
- </tr>
625
- <tr>
626
- <td rowspan="2"><b>Mix</b></td>
627
- <td>MonkeyOCR-3B <a href="https://huggingface.co/echo840/MonkeyOCR/blob/main/Structure/doclayout_yolo_docstructbench_imgsz1280_2501.pt">[Weight]</a></td>
628
- <td><b>0.046</b></td>
629
- <td>0.120</td>
630
- <td><b>0.024</b></td>
631
- <td><b>0.100</b></td>
632
- <td><b>0.129</b></td>
633
- <td><u>0.086</u></td>
634
- <td><b>0.024</b></td>
635
- <td>0.643</td>
636
- <td><b>0.131</b></td>
637
- <td><u>0.155</u></td>
638
- </tr>
639
- <tr>
640
- <td>MonkeyOCR-3B* <a href="https://huggingface.co/echo840/MonkeyOCR/blob/main/Structure/layout_zh.pt">[Weight]</a></td>
641
- <td>0.054</td>
642
- <td>0.203</td>
643
- <td>0.038</td>
644
- <td>0.112</td>
645
- <td>0.138</td>
646
- <td>0.111</td>
647
- <td>0.032</td>
648
- <td><u>0.194</u></td>
649
- <td><u>0.136</u></td>
650
- <td><b>0.120</b></td>
651
- </tr>
652
- </tbody>
653
- </table>
654
-
655
- ### 3. Comparing MonkeyOCR with closed-source and extra large open-source VLMs.
656
- <img src="https://v1.ax1x.com/2025/06/05/7jQlj4.png" alt="7jQlj4.png" border="0" />
657
-
658
-
659
- ## Visualization Demo
660
-
661
- Get a Quick Hands-On Experience with Our Demo: http://vlrlabmonkey.xyz:7685
662
-
663
- > Our demo is simple and easy to use:
664
- >
665
- > 1. Upload a PDF or image.
666
- > 2. Click “Parse (解析)” to let the model perform structure detection, content recognition, and relationship prediction on the input document. The final output will be a markdown-formatted version of the document.
667
- > 3. Select a prompt and click “Test by prompt” to let the model perform content recognition on the image based on the selected prompt.
668
-
669
-
670
-
671
-
672
- ### Example for formula document
673
- <img src="https://v1.ax1x.com/2025/06/10/7jVLgB.jpg" alt="7jVLgB.jpg" border="0" />
674
-
675
- ### Example for table document
676
- <img src="https://v1.ax1x.com/2025/06/11/7jcOaa.png" alt="7jcOaa.png" border="0" />
677
-
678
- ### Example for newspaper
679
- <img src="https://v1.ax1x.com/2025/06/11/7jcP5V.png" alt="7jcP5V.png" border="0" />
680
-
681
- ### Example for financial report
682
- <img src="https://v1.ax1x.com/2025/06/11/7jc10I.png" alt="7jc10I.png" border="0" />
683
- <img src="https://v1.ax1x.com/2025/06/11/7jcRCL.png" alt="7jcRCL.png" border="0" />
684
-
685
- ## Citing MonkeyOCR
686
-
687
- If you wish to refer to the baseline results published here, please use the following BibTeX entries:
688
-
689
- ```BibTeX
690
- @misc{li2025monkeyocrdocumentparsingstructurerecognitionrelation,
691
- title={MonkeyOCR: Document Parsing with a Structure-Recognition-Relation Triplet Paradigm},
692
- author={Zhang Li and Yuliang Liu and Qiang Liu and Zhiyin Ma and Ziyang Zhang and Shuo Zhang and Zidun Guo and Jiarui Zhang and Xinyu Wang and Xiang Bai},
693
- year={2025},
694
- eprint={2506.05218},
695
- archivePrefix={arXiv},
696
- primaryClass={cs.CV},
697
- url={https://arxiv.org/abs/2506.05218},
698
- }
699
- ```
700
-
701
-
702
-
703
- ## Acknowledgments
704
- We would like to thank [MinerU](https://github.com/opendatalab/MinerU), [DocLayout-YOLO](https://github.com/opendatalab/DocLayout-YOLO), [PyMuPDF](https://github.com/pymupdf/PyMuPDF), [layoutreader](https://github.com/ppaanngggg/layoutreader), [Qwen2.5-VL](https://github.com/QwenLM/Qwen2.5-VL), [LMDeploy](https://github.com/InternLM/lmdeploy), and [InternVL3](https://github.com/OpenGVLab/InternVL) for providing base code and models, as well as their contributions to this field. We also thank [M6Doc](https://github.com/HCIILAB/M6Doc), [DocLayNet](https://github.com/DS4SD/DocLayNet), [CDLA](https://github.com/buptlihang/CDLA), [D4LA](https://github.com/AlibabaResearch/AdvancedLiterateMachinery), [DocGenome](https://github.com/Alpha-Innovator/DocGenome), [PubTabNet](https://github.com/ibm-aur-nlp/PubTabNet), and [UniMER-1M](https://github.com/opendatalab/UniMERNet) for providing valuable datasets.
705
-
706
-
707
- ## Copyright
708
- Please don’t hesitate to share your valuable feedback — it’s a key motivation that drives us to continuously improve our framework. The current technical report only presents the results of the 3B model. Our model is intended for non-commercial use. If you are interested in larger one, please contact us at [email protected] or [email protected].
 
1
+ ---
2
+ license: apache-2.0
3
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Recognition/added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
Recognition/chat_template.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}"
3
+ }
Recognition/config.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "MonkeyOCR-1.2B-0709",
3
+ "architectures": [
4
+ "Qwen2_5_VLForConditionalGeneration"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151645,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 2048,
11
+ "image_token_id": 151655,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 11008,
14
+ "max_position_embeddings": 128000,
15
+ "max_window_layers": 70,
16
+ "model_type": "qwen2_5_vl",
17
+ "num_attention_heads": 16,
18
+ "num_hidden_layers": 12,
19
+ "num_key_value_heads": 2,
20
+ "rms_norm_eps": 1e-06,
21
+ "rope_scaling": {
22
+ "mrope_section": [
23
+ 16,
24
+ 24,
25
+ 24
26
+ ],
27
+ "rope_type": "default",
28
+ "type": "default"
29
+ },
30
+ "rope_theta": 1000000.0,
31
+ "sliding_window": 32768,
32
+ "tie_word_embeddings": true,
33
+ "torch_dtype": "bfloat16",
34
+ "transformers_version": "4.50.0.dev0",
35
+ "use_cache": false,
36
+ "use_sliding_window": false,
37
+ "video_token_id": 151656,
38
+ "vision_config": {
39
+ "hidden_size": 1280,
40
+ "in_chans": 3,
41
+ "model_type": "qwen2_5_vl",
42
+ "out_hidden_size": 2048,
43
+ "spatial_patch_size": 14,
44
+ "tokens_per_second": 2,
45
+ "torch_dtype": "bfloat16"
46
+ },
47
+ "vision_end_token_id": 151653,
48
+ "vision_start_token_id": 151652,
49
+ "vision_token_id": 151654,
50
+ "vocab_size": 151936
51
+ }
Recognition/generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.05,
10
+ "temperature": 0.1,
11
+ "top_k": 1,
12
+ "top_p": 0.001,
13
+ "transformers_version": "4.50.0.dev0"
14
+ }
Recognition/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
Recognition/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bf7e21986c63a3646ca393ba36d2ea7706b7c8632c3d2de15f6e6569b671b39f
3
+ size 3809609344
Recognition/model.safetensors.index.json ADDED
@@ -0,0 +1,831 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 7509245952
4
+ },
5
+ "weight_map": {
6
+ "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
7
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
8
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
9
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
10
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
11
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
12
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
15
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
16
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
17
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
18
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
19
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
20
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
21
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
22
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
23
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
24
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
25
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
26
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
27
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
28
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
29
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
30
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
31
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
32
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
33
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
34
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
35
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
36
+ "model.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
37
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
38
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
39
+ "model.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
40
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
41
+ "model.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
42
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
43
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
44
+ "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
45
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
46
+ "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
47
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
48
+ "model.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
49
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
50
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
51
+ "model.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
52
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
53
+ "model.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
54
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
55
+ "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
56
+ "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
57
+ "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
58
+ "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
59
+ "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
60
+ "model.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
61
+ "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
62
+ "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
63
+ "model.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
64
+ "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
65
+ "model.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
66
+ "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
67
+ "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
68
+ "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
69
+ "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
70
+ "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
71
+ "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
72
+ "model.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
73
+ "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
74
+ "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
75
+ "model.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
76
+ "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
77
+ "model.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
78
+ "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
79
+ "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
80
+ "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
81
+ "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
82
+ "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
83
+ "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
84
+ "model.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
85
+ "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
86
+ "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
87
+ "model.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
88
+ "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
89
+ "model.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
90
+ "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
91
+ "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
92
+ "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
93
+ "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
94
+ "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
95
+ "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
96
+ "model.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
97
+ "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
98
+ "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
99
+ "model.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
100
+ "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
101
+ "model.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
102
+ "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
103
+ "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
104
+ "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
105
+ "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
106
+ "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
107
+ "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
108
+ "model.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
109
+ "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
110
+ "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
111
+ "model.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
112
+ "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
113
+ "model.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
114
+ "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
115
+ "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
116
+ "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
117
+ "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
118
+ "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
119
+ "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
120
+ "model.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
121
+ "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
122
+ "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
123
+ "model.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
124
+ "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
125
+ "model.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
126
+ "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
127
+ "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
128
+ "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
129
+ "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
130
+ "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
131
+ "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
132
+ "model.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
133
+ "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
134
+ "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
135
+ "model.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
136
+ "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
137
+ "model.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
138
+ "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
139
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00002.safetensors",
140
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
141
+ "model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
142
+ "model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
143
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
144
+ "model.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
145
+ "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
146
+ "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
147
+ "model.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
148
+ "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
149
+ "model.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
150
+ "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
151
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
152
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
153
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
154
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
155
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
156
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
157
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
158
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
159
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
160
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
161
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
162
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
163
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00002.safetensors",
164
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
165
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
166
+ "model.layers.20.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
167
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
168
+ "model.layers.20.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
169
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
170
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
171
+ "model.layers.20.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
172
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
173
+ "model.layers.20.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
174
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
175
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
176
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
177
+ "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
178
+ "model.layers.21.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
179
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
180
+ "model.layers.21.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
181
+ "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
182
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
183
+ "model.layers.21.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
184
+ "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
185
+ "model.layers.21.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
186
+ "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
187
+ "model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
188
+ "model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
189
+ "model.layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
190
+ "model.layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
191
+ "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
192
+ "model.layers.22.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
193
+ "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
194
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
195
+ "model.layers.22.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
196
+ "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
197
+ "model.layers.22.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
198
+ "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
199
+ "model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
200
+ "model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
201
+ "model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
202
+ "model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
203
+ "model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
204
+ "model.layers.23.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
205
+ "model.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
206
+ "model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
207
+ "model.layers.23.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
208
+ "model.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
209
+ "model.layers.23.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
210
+ "model.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
211
+ "model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
212
+ "model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
213
+ "model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
214
+ "model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
215
+ "model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
216
+ "model.layers.24.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
217
+ "model.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
218
+ "model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
219
+ "model.layers.24.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
220
+ "model.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
221
+ "model.layers.24.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
222
+ "model.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
223
+ "model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
224
+ "model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
225
+ "model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
226
+ "model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
227
+ "model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
228
+ "model.layers.25.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
229
+ "model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
230
+ "model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
231
+ "model.layers.25.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
232
+ "model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
233
+ "model.layers.25.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
234
+ "model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
235
+ "model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
236
+ "model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
237
+ "model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
238
+ "model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
239
+ "model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
240
+ "model.layers.26.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
241
+ "model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
242
+ "model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
243
+ "model.layers.26.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
244
+ "model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
245
+ "model.layers.26.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
246
+ "model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
247
+ "model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
248
+ "model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
249
+ "model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
250
+ "model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
251
+ "model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
252
+ "model.layers.27.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
253
+ "model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
254
+ "model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
255
+ "model.layers.27.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
256
+ "model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
257
+ "model.layers.27.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
258
+ "model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
259
+ "model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
260
+ "model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
261
+ "model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
262
+ "model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
263
+ "model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
264
+ "model.layers.28.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
265
+ "model.layers.28.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
266
+ "model.layers.28.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
267
+ "model.layers.28.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
268
+ "model.layers.28.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
269
+ "model.layers.28.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
270
+ "model.layers.28.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
271
+ "model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
272
+ "model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
273
+ "model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
274
+ "model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
275
+ "model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
276
+ "model.layers.29.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
277
+ "model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
278
+ "model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
279
+ "model.layers.29.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
280
+ "model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
281
+ "model.layers.29.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
282
+ "model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
283
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
284
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
285
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
286
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
287
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
288
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
289
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
290
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
291
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
292
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
293
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
294
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
295
+ "model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
296
+ "model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
297
+ "model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
298
+ "model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
299
+ "model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
300
+ "model.layers.30.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
301
+ "model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
302
+ "model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
303
+ "model.layers.30.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
304
+ "model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
305
+ "model.layers.30.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
306
+ "model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
307
+ "model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
308
+ "model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
309
+ "model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
310
+ "model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
311
+ "model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
312
+ "model.layers.31.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
313
+ "model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
314
+ "model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
315
+ "model.layers.31.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
316
+ "model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
317
+ "model.layers.31.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
318
+ "model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
319
+ "model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
320
+ "model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
321
+ "model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
322
+ "model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
323
+ "model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
324
+ "model.layers.32.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
325
+ "model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
326
+ "model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
327
+ "model.layers.32.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
328
+ "model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
329
+ "model.layers.32.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
330
+ "model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
331
+ "model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
332
+ "model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
333
+ "model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
334
+ "model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
335
+ "model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
336
+ "model.layers.33.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
337
+ "model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
338
+ "model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
339
+ "model.layers.33.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
340
+ "model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
341
+ "model.layers.33.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
342
+ "model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
343
+ "model.layers.34.input_layernorm.weight": "model-00002-of-00002.safetensors",
344
+ "model.layers.34.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
345
+ "model.layers.34.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
346
+ "model.layers.34.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
347
+ "model.layers.34.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
348
+ "model.layers.34.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
349
+ "model.layers.34.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
350
+ "model.layers.34.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
351
+ "model.layers.34.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
352
+ "model.layers.34.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
353
+ "model.layers.34.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
354
+ "model.layers.34.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
355
+ "model.layers.35.input_layernorm.weight": "model-00002-of-00002.safetensors",
356
+ "model.layers.35.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
357
+ "model.layers.35.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
358
+ "model.layers.35.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
359
+ "model.layers.35.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
360
+ "model.layers.35.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
361
+ "model.layers.35.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
362
+ "model.layers.35.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
363
+ "model.layers.35.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
364
+ "model.layers.35.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
365
+ "model.layers.35.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
366
+ "model.layers.35.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
367
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
368
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
369
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
370
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
371
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
372
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
373
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
374
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
375
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
376
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
377
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
378
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
379
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
380
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
381
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
382
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
383
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
384
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
385
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
386
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
387
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
388
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
389
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
390
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
391
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
392
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
393
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
394
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
395
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
396
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
397
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
398
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
399
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
400
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
401
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
402
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
403
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
404
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
405
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
406
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
407
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
408
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
409
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
410
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
411
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
412
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
413
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
414
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
415
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
416
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
417
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
418
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
419
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
420
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
421
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
422
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
423
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
424
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
425
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
426
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
427
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
428
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
429
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
430
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
431
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
432
+ "model.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
433
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
434
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
435
+ "model.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
436
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
437
+ "model.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
438
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
439
+ "model.norm.weight": "model-00002-of-00002.safetensors",
440
+ "visual.blocks.0.attn.proj.bias": "model-00001-of-00002.safetensors",
441
+ "visual.blocks.0.attn.proj.weight": "model-00001-of-00002.safetensors",
442
+ "visual.blocks.0.attn.qkv.bias": "model-00001-of-00002.safetensors",
443
+ "visual.blocks.0.attn.qkv.weight": "model-00001-of-00002.safetensors",
444
+ "visual.blocks.0.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
445
+ "visual.blocks.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
446
+ "visual.blocks.0.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
447
+ "visual.blocks.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
448
+ "visual.blocks.0.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
449
+ "visual.blocks.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
450
+ "visual.blocks.0.norm1.weight": "model-00001-of-00002.safetensors",
451
+ "visual.blocks.0.norm2.weight": "model-00001-of-00002.safetensors",
452
+ "visual.blocks.1.attn.proj.bias": "model-00001-of-00002.safetensors",
453
+ "visual.blocks.1.attn.proj.weight": "model-00001-of-00002.safetensors",
454
+ "visual.blocks.1.attn.qkv.bias": "model-00001-of-00002.safetensors",
455
+ "visual.blocks.1.attn.qkv.weight": "model-00001-of-00002.safetensors",
456
+ "visual.blocks.1.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
457
+ "visual.blocks.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
458
+ "visual.blocks.1.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
459
+ "visual.blocks.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
460
+ "visual.blocks.1.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
461
+ "visual.blocks.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
462
+ "visual.blocks.1.norm1.weight": "model-00001-of-00002.safetensors",
463
+ "visual.blocks.1.norm2.weight": "model-00001-of-00002.safetensors",
464
+ "visual.blocks.10.attn.proj.bias": "model-00001-of-00002.safetensors",
465
+ "visual.blocks.10.attn.proj.weight": "model-00001-of-00002.safetensors",
466
+ "visual.blocks.10.attn.qkv.bias": "model-00001-of-00002.safetensors",
467
+ "visual.blocks.10.attn.qkv.weight": "model-00001-of-00002.safetensors",
468
+ "visual.blocks.10.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
469
+ "visual.blocks.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
470
+ "visual.blocks.10.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
471
+ "visual.blocks.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
472
+ "visual.blocks.10.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
473
+ "visual.blocks.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
474
+ "visual.blocks.10.norm1.weight": "model-00001-of-00002.safetensors",
475
+ "visual.blocks.10.norm2.weight": "model-00001-of-00002.safetensors",
476
+ "visual.blocks.11.attn.proj.bias": "model-00001-of-00002.safetensors",
477
+ "visual.blocks.11.attn.proj.weight": "model-00001-of-00002.safetensors",
478
+ "visual.blocks.11.attn.qkv.bias": "model-00001-of-00002.safetensors",
479
+ "visual.blocks.11.attn.qkv.weight": "model-00001-of-00002.safetensors",
480
+ "visual.blocks.11.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
481
+ "visual.blocks.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
482
+ "visual.blocks.11.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
483
+ "visual.blocks.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
484
+ "visual.blocks.11.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
485
+ "visual.blocks.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
486
+ "visual.blocks.11.norm1.weight": "model-00001-of-00002.safetensors",
487
+ "visual.blocks.11.norm2.weight": "model-00001-of-00002.safetensors",
488
+ "visual.blocks.12.attn.proj.bias": "model-00001-of-00002.safetensors",
489
+ "visual.blocks.12.attn.proj.weight": "model-00001-of-00002.safetensors",
490
+ "visual.blocks.12.attn.qkv.bias": "model-00001-of-00002.safetensors",
491
+ "visual.blocks.12.attn.qkv.weight": "model-00001-of-00002.safetensors",
492
+ "visual.blocks.12.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
493
+ "visual.blocks.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
494
+ "visual.blocks.12.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
495
+ "visual.blocks.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
496
+ "visual.blocks.12.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
497
+ "visual.blocks.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
498
+ "visual.blocks.12.norm1.weight": "model-00001-of-00002.safetensors",
499
+ "visual.blocks.12.norm2.weight": "model-00001-of-00002.safetensors",
500
+ "visual.blocks.13.attn.proj.bias": "model-00001-of-00002.safetensors",
501
+ "visual.blocks.13.attn.proj.weight": "model-00001-of-00002.safetensors",
502
+ "visual.blocks.13.attn.qkv.bias": "model-00001-of-00002.safetensors",
503
+ "visual.blocks.13.attn.qkv.weight": "model-00001-of-00002.safetensors",
504
+ "visual.blocks.13.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
505
+ "visual.blocks.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
506
+ "visual.blocks.13.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
507
+ "visual.blocks.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
508
+ "visual.blocks.13.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
509
+ "visual.blocks.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
510
+ "visual.blocks.13.norm1.weight": "model-00001-of-00002.safetensors",
511
+ "visual.blocks.13.norm2.weight": "model-00001-of-00002.safetensors",
512
+ "visual.blocks.14.attn.proj.bias": "model-00001-of-00002.safetensors",
513
+ "visual.blocks.14.attn.proj.weight": "model-00001-of-00002.safetensors",
514
+ "visual.blocks.14.attn.qkv.bias": "model-00001-of-00002.safetensors",
515
+ "visual.blocks.14.attn.qkv.weight": "model-00001-of-00002.safetensors",
516
+ "visual.blocks.14.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
517
+ "visual.blocks.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
518
+ "visual.blocks.14.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
519
+ "visual.blocks.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
520
+ "visual.blocks.14.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
521
+ "visual.blocks.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
522
+ "visual.blocks.14.norm1.weight": "model-00001-of-00002.safetensors",
523
+ "visual.blocks.14.norm2.weight": "model-00001-of-00002.safetensors",
524
+ "visual.blocks.15.attn.proj.bias": "model-00001-of-00002.safetensors",
525
+ "visual.blocks.15.attn.proj.weight": "model-00001-of-00002.safetensors",
526
+ "visual.blocks.15.attn.qkv.bias": "model-00001-of-00002.safetensors",
527
+ "visual.blocks.15.attn.qkv.weight": "model-00001-of-00002.safetensors",
528
+ "visual.blocks.15.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
529
+ "visual.blocks.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
530
+ "visual.blocks.15.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
531
+ "visual.blocks.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
532
+ "visual.blocks.15.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
533
+ "visual.blocks.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
534
+ "visual.blocks.15.norm1.weight": "model-00001-of-00002.safetensors",
535
+ "visual.blocks.15.norm2.weight": "model-00001-of-00002.safetensors",
536
+ "visual.blocks.16.attn.proj.bias": "model-00001-of-00002.safetensors",
537
+ "visual.blocks.16.attn.proj.weight": "model-00001-of-00002.safetensors",
538
+ "visual.blocks.16.attn.qkv.bias": "model-00001-of-00002.safetensors",
539
+ "visual.blocks.16.attn.qkv.weight": "model-00001-of-00002.safetensors",
540
+ "visual.blocks.16.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
541
+ "visual.blocks.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
542
+ "visual.blocks.16.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
543
+ "visual.blocks.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
544
+ "visual.blocks.16.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
545
+ "visual.blocks.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
546
+ "visual.blocks.16.norm1.weight": "model-00001-of-00002.safetensors",
547
+ "visual.blocks.16.norm2.weight": "model-00001-of-00002.safetensors",
548
+ "visual.blocks.17.attn.proj.bias": "model-00001-of-00002.safetensors",
549
+ "visual.blocks.17.attn.proj.weight": "model-00001-of-00002.safetensors",
550
+ "visual.blocks.17.attn.qkv.bias": "model-00001-of-00002.safetensors",
551
+ "visual.blocks.17.attn.qkv.weight": "model-00001-of-00002.safetensors",
552
+ "visual.blocks.17.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
553
+ "visual.blocks.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
554
+ "visual.blocks.17.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
555
+ "visual.blocks.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
556
+ "visual.blocks.17.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
557
+ "visual.blocks.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
558
+ "visual.blocks.17.norm1.weight": "model-00001-of-00002.safetensors",
559
+ "visual.blocks.17.norm2.weight": "model-00001-of-00002.safetensors",
560
+ "visual.blocks.18.attn.proj.bias": "model-00001-of-00002.safetensors",
561
+ "visual.blocks.18.attn.proj.weight": "model-00001-of-00002.safetensors",
562
+ "visual.blocks.18.attn.qkv.bias": "model-00001-of-00002.safetensors",
563
+ "visual.blocks.18.attn.qkv.weight": "model-00001-of-00002.safetensors",
564
+ "visual.blocks.18.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
565
+ "visual.blocks.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
566
+ "visual.blocks.18.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
567
+ "visual.blocks.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
568
+ "visual.blocks.18.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
569
+ "visual.blocks.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
570
+ "visual.blocks.18.norm1.weight": "model-00001-of-00002.safetensors",
571
+ "visual.blocks.18.norm2.weight": "model-00001-of-00002.safetensors",
572
+ "visual.blocks.19.attn.proj.bias": "model-00001-of-00002.safetensors",
573
+ "visual.blocks.19.attn.proj.weight": "model-00001-of-00002.safetensors",
574
+ "visual.blocks.19.attn.qkv.bias": "model-00001-of-00002.safetensors",
575
+ "visual.blocks.19.attn.qkv.weight": "model-00001-of-00002.safetensors",
576
+ "visual.blocks.19.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
577
+ "visual.blocks.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
578
+ "visual.blocks.19.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
579
+ "visual.blocks.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
580
+ "visual.blocks.19.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
581
+ "visual.blocks.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
582
+ "visual.blocks.19.norm1.weight": "model-00001-of-00002.safetensors",
583
+ "visual.blocks.19.norm2.weight": "model-00001-of-00002.safetensors",
584
+ "visual.blocks.2.attn.proj.bias": "model-00001-of-00002.safetensors",
585
+ "visual.blocks.2.attn.proj.weight": "model-00001-of-00002.safetensors",
586
+ "visual.blocks.2.attn.qkv.bias": "model-00001-of-00002.safetensors",
587
+ "visual.blocks.2.attn.qkv.weight": "model-00001-of-00002.safetensors",
588
+ "visual.blocks.2.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
589
+ "visual.blocks.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
590
+ "visual.blocks.2.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
591
+ "visual.blocks.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
592
+ "visual.blocks.2.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
593
+ "visual.blocks.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
594
+ "visual.blocks.2.norm1.weight": "model-00001-of-00002.safetensors",
595
+ "visual.blocks.2.norm2.weight": "model-00001-of-00002.safetensors",
596
+ "visual.blocks.20.attn.proj.bias": "model-00001-of-00002.safetensors",
597
+ "visual.blocks.20.attn.proj.weight": "model-00001-of-00002.safetensors",
598
+ "visual.blocks.20.attn.qkv.bias": "model-00001-of-00002.safetensors",
599
+ "visual.blocks.20.attn.qkv.weight": "model-00001-of-00002.safetensors",
600
+ "visual.blocks.20.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
601
+ "visual.blocks.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
602
+ "visual.blocks.20.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
603
+ "visual.blocks.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
604
+ "visual.blocks.20.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
605
+ "visual.blocks.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
606
+ "visual.blocks.20.norm1.weight": "model-00001-of-00002.safetensors",
607
+ "visual.blocks.20.norm2.weight": "model-00001-of-00002.safetensors",
608
+ "visual.blocks.21.attn.proj.bias": "model-00001-of-00002.safetensors",
609
+ "visual.blocks.21.attn.proj.weight": "model-00001-of-00002.safetensors",
610
+ "visual.blocks.21.attn.qkv.bias": "model-00001-of-00002.safetensors",
611
+ "visual.blocks.21.attn.qkv.weight": "model-00001-of-00002.safetensors",
612
+ "visual.blocks.21.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
613
+ "visual.blocks.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
614
+ "visual.blocks.21.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
615
+ "visual.blocks.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
616
+ "visual.blocks.21.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
617
+ "visual.blocks.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
618
+ "visual.blocks.21.norm1.weight": "model-00001-of-00002.safetensors",
619
+ "visual.blocks.21.norm2.weight": "model-00001-of-00002.safetensors",
620
+ "visual.blocks.22.attn.proj.bias": "model-00001-of-00002.safetensors",
621
+ "visual.blocks.22.attn.proj.weight": "model-00001-of-00002.safetensors",
622
+ "visual.blocks.22.attn.qkv.bias": "model-00001-of-00002.safetensors",
623
+ "visual.blocks.22.attn.qkv.weight": "model-00001-of-00002.safetensors",
624
+ "visual.blocks.22.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
625
+ "visual.blocks.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
626
+ "visual.blocks.22.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
627
+ "visual.blocks.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
628
+ "visual.blocks.22.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
629
+ "visual.blocks.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
630
+ "visual.blocks.22.norm1.weight": "model-00001-of-00002.safetensors",
631
+ "visual.blocks.22.norm2.weight": "model-00001-of-00002.safetensors",
632
+ "visual.blocks.23.attn.proj.bias": "model-00001-of-00002.safetensors",
633
+ "visual.blocks.23.attn.proj.weight": "model-00001-of-00002.safetensors",
634
+ "visual.blocks.23.attn.qkv.bias": "model-00001-of-00002.safetensors",
635
+ "visual.blocks.23.attn.qkv.weight": "model-00001-of-00002.safetensors",
636
+ "visual.blocks.23.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
637
+ "visual.blocks.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
638
+ "visual.blocks.23.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
639
+ "visual.blocks.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
640
+ "visual.blocks.23.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
641
+ "visual.blocks.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
642
+ "visual.blocks.23.norm1.weight": "model-00001-of-00002.safetensors",
643
+ "visual.blocks.23.norm2.weight": "model-00001-of-00002.safetensors",
644
+ "visual.blocks.24.attn.proj.bias": "model-00001-of-00002.safetensors",
645
+ "visual.blocks.24.attn.proj.weight": "model-00001-of-00002.safetensors",
646
+ "visual.blocks.24.attn.qkv.bias": "model-00001-of-00002.safetensors",
647
+ "visual.blocks.24.attn.qkv.weight": "model-00001-of-00002.safetensors",
648
+ "visual.blocks.24.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
649
+ "visual.blocks.24.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
650
+ "visual.blocks.24.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
651
+ "visual.blocks.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
652
+ "visual.blocks.24.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
653
+ "visual.blocks.24.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
654
+ "visual.blocks.24.norm1.weight": "model-00001-of-00002.safetensors",
655
+ "visual.blocks.24.norm2.weight": "model-00001-of-00002.safetensors",
656
+ "visual.blocks.25.attn.proj.bias": "model-00001-of-00002.safetensors",
657
+ "visual.blocks.25.attn.proj.weight": "model-00001-of-00002.safetensors",
658
+ "visual.blocks.25.attn.qkv.bias": "model-00001-of-00002.safetensors",
659
+ "visual.blocks.25.attn.qkv.weight": "model-00001-of-00002.safetensors",
660
+ "visual.blocks.25.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
661
+ "visual.blocks.25.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
662
+ "visual.blocks.25.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
663
+ "visual.blocks.25.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
664
+ "visual.blocks.25.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
665
+ "visual.blocks.25.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
666
+ "visual.blocks.25.norm1.weight": "model-00001-of-00002.safetensors",
667
+ "visual.blocks.25.norm2.weight": "model-00001-of-00002.safetensors",
668
+ "visual.blocks.26.attn.proj.bias": "model-00001-of-00002.safetensors",
669
+ "visual.blocks.26.attn.proj.weight": "model-00001-of-00002.safetensors",
670
+ "visual.blocks.26.attn.qkv.bias": "model-00001-of-00002.safetensors",
671
+ "visual.blocks.26.attn.qkv.weight": "model-00001-of-00002.safetensors",
672
+ "visual.blocks.26.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
673
+ "visual.blocks.26.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
674
+ "visual.blocks.26.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
675
+ "visual.blocks.26.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
676
+ "visual.blocks.26.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
677
+ "visual.blocks.26.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
678
+ "visual.blocks.26.norm1.weight": "model-00001-of-00002.safetensors",
679
+ "visual.blocks.26.norm2.weight": "model-00001-of-00002.safetensors",
680
+ "visual.blocks.27.attn.proj.bias": "model-00001-of-00002.safetensors",
681
+ "visual.blocks.27.attn.proj.weight": "model-00001-of-00002.safetensors",
682
+ "visual.blocks.27.attn.qkv.bias": "model-00001-of-00002.safetensors",
683
+ "visual.blocks.27.attn.qkv.weight": "model-00001-of-00002.safetensors",
684
+ "visual.blocks.27.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
685
+ "visual.blocks.27.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
686
+ "visual.blocks.27.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
687
+ "visual.blocks.27.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
688
+ "visual.blocks.27.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
689
+ "visual.blocks.27.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
690
+ "visual.blocks.27.norm1.weight": "model-00001-of-00002.safetensors",
691
+ "visual.blocks.27.norm2.weight": "model-00001-of-00002.safetensors",
692
+ "visual.blocks.28.attn.proj.bias": "model-00001-of-00002.safetensors",
693
+ "visual.blocks.28.attn.proj.weight": "model-00001-of-00002.safetensors",
694
+ "visual.blocks.28.attn.qkv.bias": "model-00001-of-00002.safetensors",
695
+ "visual.blocks.28.attn.qkv.weight": "model-00001-of-00002.safetensors",
696
+ "visual.blocks.28.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
697
+ "visual.blocks.28.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
698
+ "visual.blocks.28.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
699
+ "visual.blocks.28.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
700
+ "visual.blocks.28.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
701
+ "visual.blocks.28.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
702
+ "visual.blocks.28.norm1.weight": "model-00001-of-00002.safetensors",
703
+ "visual.blocks.28.norm2.weight": "model-00001-of-00002.safetensors",
704
+ "visual.blocks.29.attn.proj.bias": "model-00001-of-00002.safetensors",
705
+ "visual.blocks.29.attn.proj.weight": "model-00001-of-00002.safetensors",
706
+ "visual.blocks.29.attn.qkv.bias": "model-00001-of-00002.safetensors",
707
+ "visual.blocks.29.attn.qkv.weight": "model-00001-of-00002.safetensors",
708
+ "visual.blocks.29.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
709
+ "visual.blocks.29.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
710
+ "visual.blocks.29.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
711
+ "visual.blocks.29.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
712
+ "visual.blocks.29.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
713
+ "visual.blocks.29.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
714
+ "visual.blocks.29.norm1.weight": "model-00001-of-00002.safetensors",
715
+ "visual.blocks.29.norm2.weight": "model-00001-of-00002.safetensors",
716
+ "visual.blocks.3.attn.proj.bias": "model-00001-of-00002.safetensors",
717
+ "visual.blocks.3.attn.proj.weight": "model-00001-of-00002.safetensors",
718
+ "visual.blocks.3.attn.qkv.bias": "model-00001-of-00002.safetensors",
719
+ "visual.blocks.3.attn.qkv.weight": "model-00001-of-00002.safetensors",
720
+ "visual.blocks.3.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
721
+ "visual.blocks.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
722
+ "visual.blocks.3.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
723
+ "visual.blocks.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
724
+ "visual.blocks.3.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
725
+ "visual.blocks.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
726
+ "visual.blocks.3.norm1.weight": "model-00001-of-00002.safetensors",
727
+ "visual.blocks.3.norm2.weight": "model-00001-of-00002.safetensors",
728
+ "visual.blocks.30.attn.proj.bias": "model-00001-of-00002.safetensors",
729
+ "visual.blocks.30.attn.proj.weight": "model-00001-of-00002.safetensors",
730
+ "visual.blocks.30.attn.qkv.bias": "model-00001-of-00002.safetensors",
731
+ "visual.blocks.30.attn.qkv.weight": "model-00001-of-00002.safetensors",
732
+ "visual.blocks.30.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
733
+ "visual.blocks.30.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
734
+ "visual.blocks.30.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
735
+ "visual.blocks.30.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
736
+ "visual.blocks.30.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
737
+ "visual.blocks.30.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
738
+ "visual.blocks.30.norm1.weight": "model-00001-of-00002.safetensors",
739
+ "visual.blocks.30.norm2.weight": "model-00001-of-00002.safetensors",
740
+ "visual.blocks.31.attn.proj.bias": "model-00001-of-00002.safetensors",
741
+ "visual.blocks.31.attn.proj.weight": "model-00001-of-00002.safetensors",
742
+ "visual.blocks.31.attn.qkv.bias": "model-00001-of-00002.safetensors",
743
+ "visual.blocks.31.attn.qkv.weight": "model-00001-of-00002.safetensors",
744
+ "visual.blocks.31.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
745
+ "visual.blocks.31.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
746
+ "visual.blocks.31.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
747
+ "visual.blocks.31.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
748
+ "visual.blocks.31.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
749
+ "visual.blocks.31.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
750
+ "visual.blocks.31.norm1.weight": "model-00001-of-00002.safetensors",
751
+ "visual.blocks.31.norm2.weight": "model-00001-of-00002.safetensors",
752
+ "visual.blocks.4.attn.proj.bias": "model-00001-of-00002.safetensors",
753
+ "visual.blocks.4.attn.proj.weight": "model-00001-of-00002.safetensors",
754
+ "visual.blocks.4.attn.qkv.bias": "model-00001-of-00002.safetensors",
755
+ "visual.blocks.4.attn.qkv.weight": "model-00001-of-00002.safetensors",
756
+ "visual.blocks.4.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
757
+ "visual.blocks.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
758
+ "visual.blocks.4.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
759
+ "visual.blocks.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
760
+ "visual.blocks.4.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
761
+ "visual.blocks.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
762
+ "visual.blocks.4.norm1.weight": "model-00001-of-00002.safetensors",
763
+ "visual.blocks.4.norm2.weight": "model-00001-of-00002.safetensors",
764
+ "visual.blocks.5.attn.proj.bias": "model-00001-of-00002.safetensors",
765
+ "visual.blocks.5.attn.proj.weight": "model-00001-of-00002.safetensors",
766
+ "visual.blocks.5.attn.qkv.bias": "model-00001-of-00002.safetensors",
767
+ "visual.blocks.5.attn.qkv.weight": "model-00001-of-00002.safetensors",
768
+ "visual.blocks.5.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
769
+ "visual.blocks.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
770
+ "visual.blocks.5.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
771
+ "visual.blocks.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
772
+ "visual.blocks.5.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
773
+ "visual.blocks.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
774
+ "visual.blocks.5.norm1.weight": "model-00001-of-00002.safetensors",
775
+ "visual.blocks.5.norm2.weight": "model-00001-of-00002.safetensors",
776
+ "visual.blocks.6.attn.proj.bias": "model-00001-of-00002.safetensors",
777
+ "visual.blocks.6.attn.proj.weight": "model-00001-of-00002.safetensors",
778
+ "visual.blocks.6.attn.qkv.bias": "model-00001-of-00002.safetensors",
779
+ "visual.blocks.6.attn.qkv.weight": "model-00001-of-00002.safetensors",
780
+ "visual.blocks.6.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
781
+ "visual.blocks.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
782
+ "visual.blocks.6.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
783
+ "visual.blocks.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
784
+ "visual.blocks.6.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
785
+ "visual.blocks.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
786
+ "visual.blocks.6.norm1.weight": "model-00001-of-00002.safetensors",
787
+ "visual.blocks.6.norm2.weight": "model-00001-of-00002.safetensors",
788
+ "visual.blocks.7.attn.proj.bias": "model-00001-of-00002.safetensors",
789
+ "visual.blocks.7.attn.proj.weight": "model-00001-of-00002.safetensors",
790
+ "visual.blocks.7.attn.qkv.bias": "model-00001-of-00002.safetensors",
791
+ "visual.blocks.7.attn.qkv.weight": "model-00001-of-00002.safetensors",
792
+ "visual.blocks.7.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
793
+ "visual.blocks.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
794
+ "visual.blocks.7.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
795
+ "visual.blocks.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
796
+ "visual.blocks.7.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
797
+ "visual.blocks.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
798
+ "visual.blocks.7.norm1.weight": "model-00001-of-00002.safetensors",
799
+ "visual.blocks.7.norm2.weight": "model-00001-of-00002.safetensors",
800
+ "visual.blocks.8.attn.proj.bias": "model-00001-of-00002.safetensors",
801
+ "visual.blocks.8.attn.proj.weight": "model-00001-of-00002.safetensors",
802
+ "visual.blocks.8.attn.qkv.bias": "model-00001-of-00002.safetensors",
803
+ "visual.blocks.8.attn.qkv.weight": "model-00001-of-00002.safetensors",
804
+ "visual.blocks.8.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
805
+ "visual.blocks.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
806
+ "visual.blocks.8.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
807
+ "visual.blocks.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
808
+ "visual.blocks.8.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
809
+ "visual.blocks.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
810
+ "visual.blocks.8.norm1.weight": "model-00001-of-00002.safetensors",
811
+ "visual.blocks.8.norm2.weight": "model-00001-of-00002.safetensors",
812
+ "visual.blocks.9.attn.proj.bias": "model-00001-of-00002.safetensors",
813
+ "visual.blocks.9.attn.proj.weight": "model-00001-of-00002.safetensors",
814
+ "visual.blocks.9.attn.qkv.bias": "model-00001-of-00002.safetensors",
815
+ "visual.blocks.9.attn.qkv.weight": "model-00001-of-00002.safetensors",
816
+ "visual.blocks.9.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
817
+ "visual.blocks.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
818
+ "visual.blocks.9.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
819
+ "visual.blocks.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
820
+ "visual.blocks.9.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
821
+ "visual.blocks.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
822
+ "visual.blocks.9.norm1.weight": "model-00001-of-00002.safetensors",
823
+ "visual.blocks.9.norm2.weight": "model-00001-of-00002.safetensors",
824
+ "visual.merger.ln_q.weight": "model-00001-of-00002.safetensors",
825
+ "visual.merger.mlp.0.bias": "model-00001-of-00002.safetensors",
826
+ "visual.merger.mlp.0.weight": "model-00001-of-00002.safetensors",
827
+ "visual.merger.mlp.2.bias": "model-00001-of-00002.safetensors",
828
+ "visual.merger.mlp.2.weight": "model-00001-of-00002.safetensors",
829
+ "visual.patch_embed.proj.weight": "model-00001-of-00002.safetensors"
830
+ }
831
+ }
Recognition/preprocessor_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_convert_rgb": true,
3
+ "do_normalize": true,
4
+ "do_rescale": true,
5
+ "do_resize": true,
6
+ "image_mean": [
7
+ 0.48145466,
8
+ 0.4578275,
9
+ 0.40821073
10
+ ],
11
+ "image_processor_type": "Qwen2VLImageProcessor",
12
+ "image_std": [
13
+ 0.26862954,
14
+ 0.26130258,
15
+ 0.27577711
16
+ ],
17
+ "max_pixels": 12845056,
18
+ "merge_size": 2,
19
+ "min_pixels": 3136,
20
+ "patch_size": 14,
21
+ "processor_class": "Qwen2_5_VLProcessor",
22
+ "resample": 3,
23
+ "rescale_factor": 0.00392156862745098,
24
+ "size": {
25
+ "longest_edge": 12845056,
26
+ "shortest_edge": 3136
27
+ },
28
+ "temporal_patch_size": 2
29
+ }
Recognition/special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
Recognition/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
Recognition/tokenizer_config.json ADDED
@@ -0,0 +1,210 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 8196,
204
+ "pad_token": "<|endoftext|>",
205
+ "padding_side": "right",
206
+ "processor_class": "Qwen2_5_VLProcessor",
207
+ "split_special_tokens": false,
208
+ "tokenizer_class": "Qwen2Tokenizer",
209
+ "unk_token": null
210
+ }
Recognition/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
Relation/config.json ADDED
@@ -0,0 +1,1063 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "LayoutLMv3ForTokenClassification"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "bos_token_id": 0,
7
+ "classifier_dropout": null,
8
+ "coordinate_size": 171,
9
+ "eos_token_id": 2,
10
+ "has_relative_attention_bias": true,
11
+ "has_spatial_attention_bias": true,
12
+ "hidden_act": "gelu",
13
+ "hidden_dropout_prob": 0.1,
14
+ "hidden_size": 1024,
15
+ "id2label": {
16
+ "0": "LABEL_0",
17
+ "1": "LABEL_1",
18
+ "2": "LABEL_2",
19
+ "3": "LABEL_3",
20
+ "4": "LABEL_4",
21
+ "5": "LABEL_5",
22
+ "6": "LABEL_6",
23
+ "7": "LABEL_7",
24
+ "8": "LABEL_8",
25
+ "9": "LABEL_9",
26
+ "10": "LABEL_10",
27
+ "11": "LABEL_11",
28
+ "12": "LABEL_12",
29
+ "13": "LABEL_13",
30
+ "14": "LABEL_14",
31
+ "15": "LABEL_15",
32
+ "16": "LABEL_16",
33
+ "17": "LABEL_17",
34
+ "18": "LABEL_18",
35
+ "19": "LABEL_19",
36
+ "20": "LABEL_20",
37
+ "21": "LABEL_21",
38
+ "22": "LABEL_22",
39
+ "23": "LABEL_23",
40
+ "24": "LABEL_24",
41
+ "25": "LABEL_25",
42
+ "26": "LABEL_26",
43
+ "27": "LABEL_27",
44
+ "28": "LABEL_28",
45
+ "29": "LABEL_29",
46
+ "30": "LABEL_30",
47
+ "31": "LABEL_31",
48
+ "32": "LABEL_32",
49
+ "33": "LABEL_33",
50
+ "34": "LABEL_34",
51
+ "35": "LABEL_35",
52
+ "36": "LABEL_36",
53
+ "37": "LABEL_37",
54
+ "38": "LABEL_38",
55
+ "39": "LABEL_39",
56
+ "40": "LABEL_40",
57
+ "41": "LABEL_41",
58
+ "42": "LABEL_42",
59
+ "43": "LABEL_43",
60
+ "44": "LABEL_44",
61
+ "45": "LABEL_45",
62
+ "46": "LABEL_46",
63
+ "47": "LABEL_47",
64
+ "48": "LABEL_48",
65
+ "49": "LABEL_49",
66
+ "50": "LABEL_50",
67
+ "51": "LABEL_51",
68
+ "52": "LABEL_52",
69
+ "53": "LABEL_53",
70
+ "54": "LABEL_54",
71
+ "55": "LABEL_55",
72
+ "56": "LABEL_56",
73
+ "57": "LABEL_57",
74
+ "58": "LABEL_58",
75
+ "59": "LABEL_59",
76
+ "60": "LABEL_60",
77
+ "61": "LABEL_61",
78
+ "62": "LABEL_62",
79
+ "63": "LABEL_63",
80
+ "64": "LABEL_64",
81
+ "65": "LABEL_65",
82
+ "66": "LABEL_66",
83
+ "67": "LABEL_67",
84
+ "68": "LABEL_68",
85
+ "69": "LABEL_69",
86
+ "70": "LABEL_70",
87
+ "71": "LABEL_71",
88
+ "72": "LABEL_72",
89
+ "73": "LABEL_73",
90
+ "74": "LABEL_74",
91
+ "75": "LABEL_75",
92
+ "76": "LABEL_76",
93
+ "77": "LABEL_77",
94
+ "78": "LABEL_78",
95
+ "79": "LABEL_79",
96
+ "80": "LABEL_80",
97
+ "81": "LABEL_81",
98
+ "82": "LABEL_82",
99
+ "83": "LABEL_83",
100
+ "84": "LABEL_84",
101
+ "85": "LABEL_85",
102
+ "86": "LABEL_86",
103
+ "87": "LABEL_87",
104
+ "88": "LABEL_88",
105
+ "89": "LABEL_89",
106
+ "90": "LABEL_90",
107
+ "91": "LABEL_91",
108
+ "92": "LABEL_92",
109
+ "93": "LABEL_93",
110
+ "94": "LABEL_94",
111
+ "95": "LABEL_95",
112
+ "96": "LABEL_96",
113
+ "97": "LABEL_97",
114
+ "98": "LABEL_98",
115
+ "99": "LABEL_99",
116
+ "100": "LABEL_100",
117
+ "101": "LABEL_101",
118
+ "102": "LABEL_102",
119
+ "103": "LABEL_103",
120
+ "104": "LABEL_104",
121
+ "105": "LABEL_105",
122
+ "106": "LABEL_106",
123
+ "107": "LABEL_107",
124
+ "108": "LABEL_108",
125
+ "109": "LABEL_109",
126
+ "110": "LABEL_110",
127
+ "111": "LABEL_111",
128
+ "112": "LABEL_112",
129
+ "113": "LABEL_113",
130
+ "114": "LABEL_114",
131
+ "115": "LABEL_115",
132
+ "116": "LABEL_116",
133
+ "117": "LABEL_117",
134
+ "118": "LABEL_118",
135
+ "119": "LABEL_119",
136
+ "120": "LABEL_120",
137
+ "121": "LABEL_121",
138
+ "122": "LABEL_122",
139
+ "123": "LABEL_123",
140
+ "124": "LABEL_124",
141
+ "125": "LABEL_125",
142
+ "126": "LABEL_126",
143
+ "127": "LABEL_127",
144
+ "128": "LABEL_128",
145
+ "129": "LABEL_129",
146
+ "130": "LABEL_130",
147
+ "131": "LABEL_131",
148
+ "132": "LABEL_132",
149
+ "133": "LABEL_133",
150
+ "134": "LABEL_134",
151
+ "135": "LABEL_135",
152
+ "136": "LABEL_136",
153
+ "137": "LABEL_137",
154
+ "138": "LABEL_138",
155
+ "139": "LABEL_139",
156
+ "140": "LABEL_140",
157
+ "141": "LABEL_141",
158
+ "142": "LABEL_142",
159
+ "143": "LABEL_143",
160
+ "144": "LABEL_144",
161
+ "145": "LABEL_145",
162
+ "146": "LABEL_146",
163
+ "147": "LABEL_147",
164
+ "148": "LABEL_148",
165
+ "149": "LABEL_149",
166
+ "150": "LABEL_150",
167
+ "151": "LABEL_151",
168
+ "152": "LABEL_152",
169
+ "153": "LABEL_153",
170
+ "154": "LABEL_154",
171
+ "155": "LABEL_155",
172
+ "156": "LABEL_156",
173
+ "157": "LABEL_157",
174
+ "158": "LABEL_158",
175
+ "159": "LABEL_159",
176
+ "160": "LABEL_160",
177
+ "161": "LABEL_161",
178
+ "162": "LABEL_162",
179
+ "163": "LABEL_163",
180
+ "164": "LABEL_164",
181
+ "165": "LABEL_165",
182
+ "166": "LABEL_166",
183
+ "167": "LABEL_167",
184
+ "168": "LABEL_168",
185
+ "169": "LABEL_169",
186
+ "170": "LABEL_170",
187
+ "171": "LABEL_171",
188
+ "172": "LABEL_172",
189
+ "173": "LABEL_173",
190
+ "174": "LABEL_174",
191
+ "175": "LABEL_175",
192
+ "176": "LABEL_176",
193
+ "177": "LABEL_177",
194
+ "178": "LABEL_178",
195
+ "179": "LABEL_179",
196
+ "180": "LABEL_180",
197
+ "181": "LABEL_181",
198
+ "182": "LABEL_182",
199
+ "183": "LABEL_183",
200
+ "184": "LABEL_184",
201
+ "185": "LABEL_185",
202
+ "186": "LABEL_186",
203
+ "187": "LABEL_187",
204
+ "188": "LABEL_188",
205
+ "189": "LABEL_189",
206
+ "190": "LABEL_190",
207
+ "191": "LABEL_191",
208
+ "192": "LABEL_192",
209
+ "193": "LABEL_193",
210
+ "194": "LABEL_194",
211
+ "195": "LABEL_195",
212
+ "196": "LABEL_196",
213
+ "197": "LABEL_197",
214
+ "198": "LABEL_198",
215
+ "199": "LABEL_199",
216
+ "200": "LABEL_200",
217
+ "201": "LABEL_201",
218
+ "202": "LABEL_202",
219
+ "203": "LABEL_203",
220
+ "204": "LABEL_204",
221
+ "205": "LABEL_205",
222
+ "206": "LABEL_206",
223
+ "207": "LABEL_207",
224
+ "208": "LABEL_208",
225
+ "209": "LABEL_209",
226
+ "210": "LABEL_210",
227
+ "211": "LABEL_211",
228
+ "212": "LABEL_212",
229
+ "213": "LABEL_213",
230
+ "214": "LABEL_214",
231
+ "215": "LABEL_215",
232
+ "216": "LABEL_216",
233
+ "217": "LABEL_217",
234
+ "218": "LABEL_218",
235
+ "219": "LABEL_219",
236
+ "220": "LABEL_220",
237
+ "221": "LABEL_221",
238
+ "222": "LABEL_222",
239
+ "223": "LABEL_223",
240
+ "224": "LABEL_224",
241
+ "225": "LABEL_225",
242
+ "226": "LABEL_226",
243
+ "227": "LABEL_227",
244
+ "228": "LABEL_228",
245
+ "229": "LABEL_229",
246
+ "230": "LABEL_230",
247
+ "231": "LABEL_231",
248
+ "232": "LABEL_232",
249
+ "233": "LABEL_233",
250
+ "234": "LABEL_234",
251
+ "235": "LABEL_235",
252
+ "236": "LABEL_236",
253
+ "237": "LABEL_237",
254
+ "238": "LABEL_238",
255
+ "239": "LABEL_239",
256
+ "240": "LABEL_240",
257
+ "241": "LABEL_241",
258
+ "242": "LABEL_242",
259
+ "243": "LABEL_243",
260
+ "244": "LABEL_244",
261
+ "245": "LABEL_245",
262
+ "246": "LABEL_246",
263
+ "247": "LABEL_247",
264
+ "248": "LABEL_248",
265
+ "249": "LABEL_249",
266
+ "250": "LABEL_250",
267
+ "251": "LABEL_251",
268
+ "252": "LABEL_252",
269
+ "253": "LABEL_253",
270
+ "254": "LABEL_254",
271
+ "255": "LABEL_255",
272
+ "256": "LABEL_256",
273
+ "257": "LABEL_257",
274
+ "258": "LABEL_258",
275
+ "259": "LABEL_259",
276
+ "260": "LABEL_260",
277
+ "261": "LABEL_261",
278
+ "262": "LABEL_262",
279
+ "263": "LABEL_263",
280
+ "264": "LABEL_264",
281
+ "265": "LABEL_265",
282
+ "266": "LABEL_266",
283
+ "267": "LABEL_267",
284
+ "268": "LABEL_268",
285
+ "269": "LABEL_269",
286
+ "270": "LABEL_270",
287
+ "271": "LABEL_271",
288
+ "272": "LABEL_272",
289
+ "273": "LABEL_273",
290
+ "274": "LABEL_274",
291
+ "275": "LABEL_275",
292
+ "276": "LABEL_276",
293
+ "277": "LABEL_277",
294
+ "278": "LABEL_278",
295
+ "279": "LABEL_279",
296
+ "280": "LABEL_280",
297
+ "281": "LABEL_281",
298
+ "282": "LABEL_282",
299
+ "283": "LABEL_283",
300
+ "284": "LABEL_284",
301
+ "285": "LABEL_285",
302
+ "286": "LABEL_286",
303
+ "287": "LABEL_287",
304
+ "288": "LABEL_288",
305
+ "289": "LABEL_289",
306
+ "290": "LABEL_290",
307
+ "291": "LABEL_291",
308
+ "292": "LABEL_292",
309
+ "293": "LABEL_293",
310
+ "294": "LABEL_294",
311
+ "295": "LABEL_295",
312
+ "296": "LABEL_296",
313
+ "297": "LABEL_297",
314
+ "298": "LABEL_298",
315
+ "299": "LABEL_299",
316
+ "300": "LABEL_300",
317
+ "301": "LABEL_301",
318
+ "302": "LABEL_302",
319
+ "303": "LABEL_303",
320
+ "304": "LABEL_304",
321
+ "305": "LABEL_305",
322
+ "306": "LABEL_306",
323
+ "307": "LABEL_307",
324
+ "308": "LABEL_308",
325
+ "309": "LABEL_309",
326
+ "310": "LABEL_310",
327
+ "311": "LABEL_311",
328
+ "312": "LABEL_312",
329
+ "313": "LABEL_313",
330
+ "314": "LABEL_314",
331
+ "315": "LABEL_315",
332
+ "316": "LABEL_316",
333
+ "317": "LABEL_317",
334
+ "318": "LABEL_318",
335
+ "319": "LABEL_319",
336
+ "320": "LABEL_320",
337
+ "321": "LABEL_321",
338
+ "322": "LABEL_322",
339
+ "323": "LABEL_323",
340
+ "324": "LABEL_324",
341
+ "325": "LABEL_325",
342
+ "326": "LABEL_326",
343
+ "327": "LABEL_327",
344
+ "328": "LABEL_328",
345
+ "329": "LABEL_329",
346
+ "330": "LABEL_330",
347
+ "331": "LABEL_331",
348
+ "332": "LABEL_332",
349
+ "333": "LABEL_333",
350
+ "334": "LABEL_334",
351
+ "335": "LABEL_335",
352
+ "336": "LABEL_336",
353
+ "337": "LABEL_337",
354
+ "338": "LABEL_338",
355
+ "339": "LABEL_339",
356
+ "340": "LABEL_340",
357
+ "341": "LABEL_341",
358
+ "342": "LABEL_342",
359
+ "343": "LABEL_343",
360
+ "344": "LABEL_344",
361
+ "345": "LABEL_345",
362
+ "346": "LABEL_346",
363
+ "347": "LABEL_347",
364
+ "348": "LABEL_348",
365
+ "349": "LABEL_349",
366
+ "350": "LABEL_350",
367
+ "351": "LABEL_351",
368
+ "352": "LABEL_352",
369
+ "353": "LABEL_353",
370
+ "354": "LABEL_354",
371
+ "355": "LABEL_355",
372
+ "356": "LABEL_356",
373
+ "357": "LABEL_357",
374
+ "358": "LABEL_358",
375
+ "359": "LABEL_359",
376
+ "360": "LABEL_360",
377
+ "361": "LABEL_361",
378
+ "362": "LABEL_362",
379
+ "363": "LABEL_363",
380
+ "364": "LABEL_364",
381
+ "365": "LABEL_365",
382
+ "366": "LABEL_366",
383
+ "367": "LABEL_367",
384
+ "368": "LABEL_368",
385
+ "369": "LABEL_369",
386
+ "370": "LABEL_370",
387
+ "371": "LABEL_371",
388
+ "372": "LABEL_372",
389
+ "373": "LABEL_373",
390
+ "374": "LABEL_374",
391
+ "375": "LABEL_375",
392
+ "376": "LABEL_376",
393
+ "377": "LABEL_377",
394
+ "378": "LABEL_378",
395
+ "379": "LABEL_379",
396
+ "380": "LABEL_380",
397
+ "381": "LABEL_381",
398
+ "382": "LABEL_382",
399
+ "383": "LABEL_383",
400
+ "384": "LABEL_384",
401
+ "385": "LABEL_385",
402
+ "386": "LABEL_386",
403
+ "387": "LABEL_387",
404
+ "388": "LABEL_388",
405
+ "389": "LABEL_389",
406
+ "390": "LABEL_390",
407
+ "391": "LABEL_391",
408
+ "392": "LABEL_392",
409
+ "393": "LABEL_393",
410
+ "394": "LABEL_394",
411
+ "395": "LABEL_395",
412
+ "396": "LABEL_396",
413
+ "397": "LABEL_397",
414
+ "398": "LABEL_398",
415
+ "399": "LABEL_399",
416
+ "400": "LABEL_400",
417
+ "401": "LABEL_401",
418
+ "402": "LABEL_402",
419
+ "403": "LABEL_403",
420
+ "404": "LABEL_404",
421
+ "405": "LABEL_405",
422
+ "406": "LABEL_406",
423
+ "407": "LABEL_407",
424
+ "408": "LABEL_408",
425
+ "409": "LABEL_409",
426
+ "410": "LABEL_410",
427
+ "411": "LABEL_411",
428
+ "412": "LABEL_412",
429
+ "413": "LABEL_413",
430
+ "414": "LABEL_414",
431
+ "415": "LABEL_415",
432
+ "416": "LABEL_416",
433
+ "417": "LABEL_417",
434
+ "418": "LABEL_418",
435
+ "419": "LABEL_419",
436
+ "420": "LABEL_420",
437
+ "421": "LABEL_421",
438
+ "422": "LABEL_422",
439
+ "423": "LABEL_423",
440
+ "424": "LABEL_424",
441
+ "425": "LABEL_425",
442
+ "426": "LABEL_426",
443
+ "427": "LABEL_427",
444
+ "428": "LABEL_428",
445
+ "429": "LABEL_429",
446
+ "430": "LABEL_430",
447
+ "431": "LABEL_431",
448
+ "432": "LABEL_432",
449
+ "433": "LABEL_433",
450
+ "434": "LABEL_434",
451
+ "435": "LABEL_435",
452
+ "436": "LABEL_436",
453
+ "437": "LABEL_437",
454
+ "438": "LABEL_438",
455
+ "439": "LABEL_439",
456
+ "440": "LABEL_440",
457
+ "441": "LABEL_441",
458
+ "442": "LABEL_442",
459
+ "443": "LABEL_443",
460
+ "444": "LABEL_444",
461
+ "445": "LABEL_445",
462
+ "446": "LABEL_446",
463
+ "447": "LABEL_447",
464
+ "448": "LABEL_448",
465
+ "449": "LABEL_449",
466
+ "450": "LABEL_450",
467
+ "451": "LABEL_451",
468
+ "452": "LABEL_452",
469
+ "453": "LABEL_453",
470
+ "454": "LABEL_454",
471
+ "455": "LABEL_455",
472
+ "456": "LABEL_456",
473
+ "457": "LABEL_457",
474
+ "458": "LABEL_458",
475
+ "459": "LABEL_459",
476
+ "460": "LABEL_460",
477
+ "461": "LABEL_461",
478
+ "462": "LABEL_462",
479
+ "463": "LABEL_463",
480
+ "464": "LABEL_464",
481
+ "465": "LABEL_465",
482
+ "466": "LABEL_466",
483
+ "467": "LABEL_467",
484
+ "468": "LABEL_468",
485
+ "469": "LABEL_469",
486
+ "470": "LABEL_470",
487
+ "471": "LABEL_471",
488
+ "472": "LABEL_472",
489
+ "473": "LABEL_473",
490
+ "474": "LABEL_474",
491
+ "475": "LABEL_475",
492
+ "476": "LABEL_476",
493
+ "477": "LABEL_477",
494
+ "478": "LABEL_478",
495
+ "479": "LABEL_479",
496
+ "480": "LABEL_480",
497
+ "481": "LABEL_481",
498
+ "482": "LABEL_482",
499
+ "483": "LABEL_483",
500
+ "484": "LABEL_484",
501
+ "485": "LABEL_485",
502
+ "486": "LABEL_486",
503
+ "487": "LABEL_487",
504
+ "488": "LABEL_488",
505
+ "489": "LABEL_489",
506
+ "490": "LABEL_490",
507
+ "491": "LABEL_491",
508
+ "492": "LABEL_492",
509
+ "493": "LABEL_493",
510
+ "494": "LABEL_494",
511
+ "495": "LABEL_495",
512
+ "496": "LABEL_496",
513
+ "497": "LABEL_497",
514
+ "498": "LABEL_498",
515
+ "499": "LABEL_499",
516
+ "500": "LABEL_500",
517
+ "501": "LABEL_501",
518
+ "502": "LABEL_502",
519
+ "503": "LABEL_503",
520
+ "504": "LABEL_504",
521
+ "505": "LABEL_505",
522
+ "506": "LABEL_506",
523
+ "507": "LABEL_507",
524
+ "508": "LABEL_508",
525
+ "509": "LABEL_509"
526
+ },
527
+ "initializer_range": 0.02,
528
+ "input_size": 224,
529
+ "intermediate_size": 4096,
530
+ "label2id": {
531
+ "LABEL_0": 0,
532
+ "LABEL_1": 1,
533
+ "LABEL_10": 10,
534
+ "LABEL_100": 100,
535
+ "LABEL_101": 101,
536
+ "LABEL_102": 102,
537
+ "LABEL_103": 103,
538
+ "LABEL_104": 104,
539
+ "LABEL_105": 105,
540
+ "LABEL_106": 106,
541
+ "LABEL_107": 107,
542
+ "LABEL_108": 108,
543
+ "LABEL_109": 109,
544
+ "LABEL_11": 11,
545
+ "LABEL_110": 110,
546
+ "LABEL_111": 111,
547
+ "LABEL_112": 112,
548
+ "LABEL_113": 113,
549
+ "LABEL_114": 114,
550
+ "LABEL_115": 115,
551
+ "LABEL_116": 116,
552
+ "LABEL_117": 117,
553
+ "LABEL_118": 118,
554
+ "LABEL_119": 119,
555
+ "LABEL_12": 12,
556
+ "LABEL_120": 120,
557
+ "LABEL_121": 121,
558
+ "LABEL_122": 122,
559
+ "LABEL_123": 123,
560
+ "LABEL_124": 124,
561
+ "LABEL_125": 125,
562
+ "LABEL_126": 126,
563
+ "LABEL_127": 127,
564
+ "LABEL_128": 128,
565
+ "LABEL_129": 129,
566
+ "LABEL_13": 13,
567
+ "LABEL_130": 130,
568
+ "LABEL_131": 131,
569
+ "LABEL_132": 132,
570
+ "LABEL_133": 133,
571
+ "LABEL_134": 134,
572
+ "LABEL_135": 135,
573
+ "LABEL_136": 136,
574
+ "LABEL_137": 137,
575
+ "LABEL_138": 138,
576
+ "LABEL_139": 139,
577
+ "LABEL_14": 14,
578
+ "LABEL_140": 140,
579
+ "LABEL_141": 141,
580
+ "LABEL_142": 142,
581
+ "LABEL_143": 143,
582
+ "LABEL_144": 144,
583
+ "LABEL_145": 145,
584
+ "LABEL_146": 146,
585
+ "LABEL_147": 147,
586
+ "LABEL_148": 148,
587
+ "LABEL_149": 149,
588
+ "LABEL_15": 15,
589
+ "LABEL_150": 150,
590
+ "LABEL_151": 151,
591
+ "LABEL_152": 152,
592
+ "LABEL_153": 153,
593
+ "LABEL_154": 154,
594
+ "LABEL_155": 155,
595
+ "LABEL_156": 156,
596
+ "LABEL_157": 157,
597
+ "LABEL_158": 158,
598
+ "LABEL_159": 159,
599
+ "LABEL_16": 16,
600
+ "LABEL_160": 160,
601
+ "LABEL_161": 161,
602
+ "LABEL_162": 162,
603
+ "LABEL_163": 163,
604
+ "LABEL_164": 164,
605
+ "LABEL_165": 165,
606
+ "LABEL_166": 166,
607
+ "LABEL_167": 167,
608
+ "LABEL_168": 168,
609
+ "LABEL_169": 169,
610
+ "LABEL_17": 17,
611
+ "LABEL_170": 170,
612
+ "LABEL_171": 171,
613
+ "LABEL_172": 172,
614
+ "LABEL_173": 173,
615
+ "LABEL_174": 174,
616
+ "LABEL_175": 175,
617
+ "LABEL_176": 176,
618
+ "LABEL_177": 177,
619
+ "LABEL_178": 178,
620
+ "LABEL_179": 179,
621
+ "LABEL_18": 18,
622
+ "LABEL_180": 180,
623
+ "LABEL_181": 181,
624
+ "LABEL_182": 182,
625
+ "LABEL_183": 183,
626
+ "LABEL_184": 184,
627
+ "LABEL_185": 185,
628
+ "LABEL_186": 186,
629
+ "LABEL_187": 187,
630
+ "LABEL_188": 188,
631
+ "LABEL_189": 189,
632
+ "LABEL_19": 19,
633
+ "LABEL_190": 190,
634
+ "LABEL_191": 191,
635
+ "LABEL_192": 192,
636
+ "LABEL_193": 193,
637
+ "LABEL_194": 194,
638
+ "LABEL_195": 195,
639
+ "LABEL_196": 196,
640
+ "LABEL_197": 197,
641
+ "LABEL_198": 198,
642
+ "LABEL_199": 199,
643
+ "LABEL_2": 2,
644
+ "LABEL_20": 20,
645
+ "LABEL_200": 200,
646
+ "LABEL_201": 201,
647
+ "LABEL_202": 202,
648
+ "LABEL_203": 203,
649
+ "LABEL_204": 204,
650
+ "LABEL_205": 205,
651
+ "LABEL_206": 206,
652
+ "LABEL_207": 207,
653
+ "LABEL_208": 208,
654
+ "LABEL_209": 209,
655
+ "LABEL_21": 21,
656
+ "LABEL_210": 210,
657
+ "LABEL_211": 211,
658
+ "LABEL_212": 212,
659
+ "LABEL_213": 213,
660
+ "LABEL_214": 214,
661
+ "LABEL_215": 215,
662
+ "LABEL_216": 216,
663
+ "LABEL_217": 217,
664
+ "LABEL_218": 218,
665
+ "LABEL_219": 219,
666
+ "LABEL_22": 22,
667
+ "LABEL_220": 220,
668
+ "LABEL_221": 221,
669
+ "LABEL_222": 222,
670
+ "LABEL_223": 223,
671
+ "LABEL_224": 224,
672
+ "LABEL_225": 225,
673
+ "LABEL_226": 226,
674
+ "LABEL_227": 227,
675
+ "LABEL_228": 228,
676
+ "LABEL_229": 229,
677
+ "LABEL_23": 23,
678
+ "LABEL_230": 230,
679
+ "LABEL_231": 231,
680
+ "LABEL_232": 232,
681
+ "LABEL_233": 233,
682
+ "LABEL_234": 234,
683
+ "LABEL_235": 235,
684
+ "LABEL_236": 236,
685
+ "LABEL_237": 237,
686
+ "LABEL_238": 238,
687
+ "LABEL_239": 239,
688
+ "LABEL_24": 24,
689
+ "LABEL_240": 240,
690
+ "LABEL_241": 241,
691
+ "LABEL_242": 242,
692
+ "LABEL_243": 243,
693
+ "LABEL_244": 244,
694
+ "LABEL_245": 245,
695
+ "LABEL_246": 246,
696
+ "LABEL_247": 247,
697
+ "LABEL_248": 248,
698
+ "LABEL_249": 249,
699
+ "LABEL_25": 25,
700
+ "LABEL_250": 250,
701
+ "LABEL_251": 251,
702
+ "LABEL_252": 252,
703
+ "LABEL_253": 253,
704
+ "LABEL_254": 254,
705
+ "LABEL_255": 255,
706
+ "LABEL_256": 256,
707
+ "LABEL_257": 257,
708
+ "LABEL_258": 258,
709
+ "LABEL_259": 259,
710
+ "LABEL_26": 26,
711
+ "LABEL_260": 260,
712
+ "LABEL_261": 261,
713
+ "LABEL_262": 262,
714
+ "LABEL_263": 263,
715
+ "LABEL_264": 264,
716
+ "LABEL_265": 265,
717
+ "LABEL_266": 266,
718
+ "LABEL_267": 267,
719
+ "LABEL_268": 268,
720
+ "LABEL_269": 269,
721
+ "LABEL_27": 27,
722
+ "LABEL_270": 270,
723
+ "LABEL_271": 271,
724
+ "LABEL_272": 272,
725
+ "LABEL_273": 273,
726
+ "LABEL_274": 274,
727
+ "LABEL_275": 275,
728
+ "LABEL_276": 276,
729
+ "LABEL_277": 277,
730
+ "LABEL_278": 278,
731
+ "LABEL_279": 279,
732
+ "LABEL_28": 28,
733
+ "LABEL_280": 280,
734
+ "LABEL_281": 281,
735
+ "LABEL_282": 282,
736
+ "LABEL_283": 283,
737
+ "LABEL_284": 284,
738
+ "LABEL_285": 285,
739
+ "LABEL_286": 286,
740
+ "LABEL_287": 287,
741
+ "LABEL_288": 288,
742
+ "LABEL_289": 289,
743
+ "LABEL_29": 29,
744
+ "LABEL_290": 290,
745
+ "LABEL_291": 291,
746
+ "LABEL_292": 292,
747
+ "LABEL_293": 293,
748
+ "LABEL_294": 294,
749
+ "LABEL_295": 295,
750
+ "LABEL_296": 296,
751
+ "LABEL_297": 297,
752
+ "LABEL_298": 298,
753
+ "LABEL_299": 299,
754
+ "LABEL_3": 3,
755
+ "LABEL_30": 30,
756
+ "LABEL_300": 300,
757
+ "LABEL_301": 301,
758
+ "LABEL_302": 302,
759
+ "LABEL_303": 303,
760
+ "LABEL_304": 304,
761
+ "LABEL_305": 305,
762
+ "LABEL_306": 306,
763
+ "LABEL_307": 307,
764
+ "LABEL_308": 308,
765
+ "LABEL_309": 309,
766
+ "LABEL_31": 31,
767
+ "LABEL_310": 310,
768
+ "LABEL_311": 311,
769
+ "LABEL_312": 312,
770
+ "LABEL_313": 313,
771
+ "LABEL_314": 314,
772
+ "LABEL_315": 315,
773
+ "LABEL_316": 316,
774
+ "LABEL_317": 317,
775
+ "LABEL_318": 318,
776
+ "LABEL_319": 319,
777
+ "LABEL_32": 32,
778
+ "LABEL_320": 320,
779
+ "LABEL_321": 321,
780
+ "LABEL_322": 322,
781
+ "LABEL_323": 323,
782
+ "LABEL_324": 324,
783
+ "LABEL_325": 325,
784
+ "LABEL_326": 326,
785
+ "LABEL_327": 327,
786
+ "LABEL_328": 328,
787
+ "LABEL_329": 329,
788
+ "LABEL_33": 33,
789
+ "LABEL_330": 330,
790
+ "LABEL_331": 331,
791
+ "LABEL_332": 332,
792
+ "LABEL_333": 333,
793
+ "LABEL_334": 334,
794
+ "LABEL_335": 335,
795
+ "LABEL_336": 336,
796
+ "LABEL_337": 337,
797
+ "LABEL_338": 338,
798
+ "LABEL_339": 339,
799
+ "LABEL_34": 34,
800
+ "LABEL_340": 340,
801
+ "LABEL_341": 341,
802
+ "LABEL_342": 342,
803
+ "LABEL_343": 343,
804
+ "LABEL_344": 344,
805
+ "LABEL_345": 345,
806
+ "LABEL_346": 346,
807
+ "LABEL_347": 347,
808
+ "LABEL_348": 348,
809
+ "LABEL_349": 349,
810
+ "LABEL_35": 35,
811
+ "LABEL_350": 350,
812
+ "LABEL_351": 351,
813
+ "LABEL_352": 352,
814
+ "LABEL_353": 353,
815
+ "LABEL_354": 354,
816
+ "LABEL_355": 355,
817
+ "LABEL_356": 356,
818
+ "LABEL_357": 357,
819
+ "LABEL_358": 358,
820
+ "LABEL_359": 359,
821
+ "LABEL_36": 36,
822
+ "LABEL_360": 360,
823
+ "LABEL_361": 361,
824
+ "LABEL_362": 362,
825
+ "LABEL_363": 363,
826
+ "LABEL_364": 364,
827
+ "LABEL_365": 365,
828
+ "LABEL_366": 366,
829
+ "LABEL_367": 367,
830
+ "LABEL_368": 368,
831
+ "LABEL_369": 369,
832
+ "LABEL_37": 37,
833
+ "LABEL_370": 370,
834
+ "LABEL_371": 371,
835
+ "LABEL_372": 372,
836
+ "LABEL_373": 373,
837
+ "LABEL_374": 374,
838
+ "LABEL_375": 375,
839
+ "LABEL_376": 376,
840
+ "LABEL_377": 377,
841
+ "LABEL_378": 378,
842
+ "LABEL_379": 379,
843
+ "LABEL_38": 38,
844
+ "LABEL_380": 380,
845
+ "LABEL_381": 381,
846
+ "LABEL_382": 382,
847
+ "LABEL_383": 383,
848
+ "LABEL_384": 384,
849
+ "LABEL_385": 385,
850
+ "LABEL_386": 386,
851
+ "LABEL_387": 387,
852
+ "LABEL_388": 388,
853
+ "LABEL_389": 389,
854
+ "LABEL_39": 39,
855
+ "LABEL_390": 390,
856
+ "LABEL_391": 391,
857
+ "LABEL_392": 392,
858
+ "LABEL_393": 393,
859
+ "LABEL_394": 394,
860
+ "LABEL_395": 395,
861
+ "LABEL_396": 396,
862
+ "LABEL_397": 397,
863
+ "LABEL_398": 398,
864
+ "LABEL_399": 399,
865
+ "LABEL_4": 4,
866
+ "LABEL_40": 40,
867
+ "LABEL_400": 400,
868
+ "LABEL_401": 401,
869
+ "LABEL_402": 402,
870
+ "LABEL_403": 403,
871
+ "LABEL_404": 404,
872
+ "LABEL_405": 405,
873
+ "LABEL_406": 406,
874
+ "LABEL_407": 407,
875
+ "LABEL_408": 408,
876
+ "LABEL_409": 409,
877
+ "LABEL_41": 41,
878
+ "LABEL_410": 410,
879
+ "LABEL_411": 411,
880
+ "LABEL_412": 412,
881
+ "LABEL_413": 413,
882
+ "LABEL_414": 414,
883
+ "LABEL_415": 415,
884
+ "LABEL_416": 416,
885
+ "LABEL_417": 417,
886
+ "LABEL_418": 418,
887
+ "LABEL_419": 419,
888
+ "LABEL_42": 42,
889
+ "LABEL_420": 420,
890
+ "LABEL_421": 421,
891
+ "LABEL_422": 422,
892
+ "LABEL_423": 423,
893
+ "LABEL_424": 424,
894
+ "LABEL_425": 425,
895
+ "LABEL_426": 426,
896
+ "LABEL_427": 427,
897
+ "LABEL_428": 428,
898
+ "LABEL_429": 429,
899
+ "LABEL_43": 43,
900
+ "LABEL_430": 430,
901
+ "LABEL_431": 431,
902
+ "LABEL_432": 432,
903
+ "LABEL_433": 433,
904
+ "LABEL_434": 434,
905
+ "LABEL_435": 435,
906
+ "LABEL_436": 436,
907
+ "LABEL_437": 437,
908
+ "LABEL_438": 438,
909
+ "LABEL_439": 439,
910
+ "LABEL_44": 44,
911
+ "LABEL_440": 440,
912
+ "LABEL_441": 441,
913
+ "LABEL_442": 442,
914
+ "LABEL_443": 443,
915
+ "LABEL_444": 444,
916
+ "LABEL_445": 445,
917
+ "LABEL_446": 446,
918
+ "LABEL_447": 447,
919
+ "LABEL_448": 448,
920
+ "LABEL_449": 449,
921
+ "LABEL_45": 45,
922
+ "LABEL_450": 450,
923
+ "LABEL_451": 451,
924
+ "LABEL_452": 452,
925
+ "LABEL_453": 453,
926
+ "LABEL_454": 454,
927
+ "LABEL_455": 455,
928
+ "LABEL_456": 456,
929
+ "LABEL_457": 457,
930
+ "LABEL_458": 458,
931
+ "LABEL_459": 459,
932
+ "LABEL_46": 46,
933
+ "LABEL_460": 460,
934
+ "LABEL_461": 461,
935
+ "LABEL_462": 462,
936
+ "LABEL_463": 463,
937
+ "LABEL_464": 464,
938
+ "LABEL_465": 465,
939
+ "LABEL_466": 466,
940
+ "LABEL_467": 467,
941
+ "LABEL_468": 468,
942
+ "LABEL_469": 469,
943
+ "LABEL_47": 47,
944
+ "LABEL_470": 470,
945
+ "LABEL_471": 471,
946
+ "LABEL_472": 472,
947
+ "LABEL_473": 473,
948
+ "LABEL_474": 474,
949
+ "LABEL_475": 475,
950
+ "LABEL_476": 476,
951
+ "LABEL_477": 477,
952
+ "LABEL_478": 478,
953
+ "LABEL_479": 479,
954
+ "LABEL_48": 48,
955
+ "LABEL_480": 480,
956
+ "LABEL_481": 481,
957
+ "LABEL_482": 482,
958
+ "LABEL_483": 483,
959
+ "LABEL_484": 484,
960
+ "LABEL_485": 485,
961
+ "LABEL_486": 486,
962
+ "LABEL_487": 487,
963
+ "LABEL_488": 488,
964
+ "LABEL_489": 489,
965
+ "LABEL_49": 49,
966
+ "LABEL_490": 490,
967
+ "LABEL_491": 491,
968
+ "LABEL_492": 492,
969
+ "LABEL_493": 493,
970
+ "LABEL_494": 494,
971
+ "LABEL_495": 495,
972
+ "LABEL_496": 496,
973
+ "LABEL_497": 497,
974
+ "LABEL_498": 498,
975
+ "LABEL_499": 499,
976
+ "LABEL_5": 5,
977
+ "LABEL_50": 50,
978
+ "LABEL_500": 500,
979
+ "LABEL_501": 501,
980
+ "LABEL_502": 502,
981
+ "LABEL_503": 503,
982
+ "LABEL_504": 504,
983
+ "LABEL_505": 505,
984
+ "LABEL_506": 506,
985
+ "LABEL_507": 507,
986
+ "LABEL_508": 508,
987
+ "LABEL_509": 509,
988
+ "LABEL_51": 51,
989
+ "LABEL_52": 52,
990
+ "LABEL_53": 53,
991
+ "LABEL_54": 54,
992
+ "LABEL_55": 55,
993
+ "LABEL_56": 56,
994
+ "LABEL_57": 57,
995
+ "LABEL_58": 58,
996
+ "LABEL_59": 59,
997
+ "LABEL_6": 6,
998
+ "LABEL_60": 60,
999
+ "LABEL_61": 61,
1000
+ "LABEL_62": 62,
1001
+ "LABEL_63": 63,
1002
+ "LABEL_64": 64,
1003
+ "LABEL_65": 65,
1004
+ "LABEL_66": 66,
1005
+ "LABEL_67": 67,
1006
+ "LABEL_68": 68,
1007
+ "LABEL_69": 69,
1008
+ "LABEL_7": 7,
1009
+ "LABEL_70": 70,
1010
+ "LABEL_71": 71,
1011
+ "LABEL_72": 72,
1012
+ "LABEL_73": 73,
1013
+ "LABEL_74": 74,
1014
+ "LABEL_75": 75,
1015
+ "LABEL_76": 76,
1016
+ "LABEL_77": 77,
1017
+ "LABEL_78": 78,
1018
+ "LABEL_79": 79,
1019
+ "LABEL_8": 8,
1020
+ "LABEL_80": 80,
1021
+ "LABEL_81": 81,
1022
+ "LABEL_82": 82,
1023
+ "LABEL_83": 83,
1024
+ "LABEL_84": 84,
1025
+ "LABEL_85": 85,
1026
+ "LABEL_86": 86,
1027
+ "LABEL_87": 87,
1028
+ "LABEL_88": 88,
1029
+ "LABEL_89": 89,
1030
+ "LABEL_9": 9,
1031
+ "LABEL_90": 90,
1032
+ "LABEL_91": 91,
1033
+ "LABEL_92": 92,
1034
+ "LABEL_93": 93,
1035
+ "LABEL_94": 94,
1036
+ "LABEL_95": 95,
1037
+ "LABEL_96": 96,
1038
+ "LABEL_97": 97,
1039
+ "LABEL_98": 98,
1040
+ "LABEL_99": 99
1041
+ },
1042
+ "layer_norm_eps": 1e-05,
1043
+ "max_2d_position_embeddings": 1024,
1044
+ "max_position_embeddings": 514,
1045
+ "max_rel_2d_pos": 256,
1046
+ "max_rel_pos": 128,
1047
+ "model_type": "layoutlmv3",
1048
+ "num_attention_heads": 16,
1049
+ "num_channels": 3,
1050
+ "num_hidden_layers": 24,
1051
+ "pad_token_id": 1,
1052
+ "patch_size": 16,
1053
+ "rel_2d_pos_bins": 64,
1054
+ "rel_pos_bins": 32,
1055
+ "second_input_size": 112,
1056
+ "shape_size": 170,
1057
+ "text_embed": true,
1058
+ "torch_dtype": "bfloat16",
1059
+ "transformers_version": "4.50.0",
1060
+ "type_vocab_size": 1,
1061
+ "visual_embed": false,
1062
+ "vocab_size": 50265
1063
+ }
Relation/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:78a7ca1cb2ba8162b2672641f9d94ebde8b953fdf35c9417c0c8383e82751265
3
+ size 713217212
Structure/doclayout_yolo_docstructbench_imgsz1280_2501.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1b152460888dc30be6db7f5dfab28bde3dcc999e5202f46187a764a1699c80be
3
+ size 39772550
Structure/layout_zh.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f5acc32e5087ebb2601cf1221c7bdba960c086e1e4b009b15ce8b21c8e935fe3
3
+ size 40654210