Improve language tag
Browse filesHi! As the model is multilingual, this is a PR to add other languages than English to the language tag to improve the referencing. Note that 29 languages are announced in the README, but only 13 are explicitly listed. I was therefore only able to add these 13 languages.
README.md
CHANGED
@@ -1,157 +1,169 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
datasets:
|
4 |
-
- openai/gsm8k
|
5 |
-
language:
|
6 |
-
-
|
7 |
-
|
8 |
-
-
|
9 |
-
|
10 |
-
|
11 |
-
-
|
12 |
-
-
|
13 |
-
-
|
14 |
-
-
|
15 |
-
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
-
|
26 |
-
-
|
27 |
-
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
- **
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
-
|
40 |
-
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
**
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
```
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
```sh
|
113 |
-
|
114 |
-
```
|
115 |
-
|
116 |
-
```sh
|
117 |
-
llama-cli -m ~/llama_models/Q8_0.gguf
|
118 |
-
```
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
```
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
##
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
datasets:
|
4 |
+
- openai/gsm8k
|
5 |
+
language:
|
6 |
+
- zho
|
7 |
+
- eng
|
8 |
+
- fra
|
9 |
+
- spa
|
10 |
+
- por
|
11 |
+
- deu
|
12 |
+
- ita
|
13 |
+
- rus
|
14 |
+
- jpn
|
15 |
+
- kor
|
16 |
+
- vie
|
17 |
+
- tha
|
18 |
+
- ara
|
19 |
+
base_model:
|
20 |
+
- Qwen/Qwen2.5-3B-Instruct
|
21 |
+
library_name: transformers
|
22 |
+
tags:
|
23 |
+
- fine-tuned
|
24 |
+
- qwen
|
25 |
+
- deepseek
|
26 |
+
- gsm8k
|
27 |
+
- reasoning
|
28 |
+
---
|
29 |
+
|
30 |
+
# Qwen 2.5-3B-Instruct Fine-Tuned on OpenAI GSM8K with DeepSeek Augmentation
|
31 |
+
|
32 |
+
## Model Overview
|
33 |
+
|
34 |
+
This model is a fine-tuned version of **Qwen/Qwen2.5-3B-Instruct**, optimized for mathematical reasoning tasks using the **OpenAI GSM8K** dataset. The fine-tuning process enhances the model's ability to generate step-by-step explanations for grade school math problems, incorporating **reasoning augmentation** through DeepSeek. The model improves upon GSM8K’s standard answers by integrating additional contextual reasoning derived from DeepSeek’s small model.
|
35 |
+
|
36 |
+
### Key Features:
|
37 |
+
- **Base Model**: Qwen 2.5-3B-Instruct
|
38 |
+
- **Fine-Tuned On**: OpenAI GSM8K dataset
|
39 |
+
- **Enhancement**: Answer augmentation with reasoning insights from **DeepSeek-V3-Small**
|
40 |
+
- **Improved Reasoning**: Model not only provides correct answers but also **augments** explanations with logical steps inspired by DeepSeek’s generative capabilities.
|
41 |
+
|
42 |
+
## Dataset & Training Details
|
43 |
+
|
44 |
+
- **Dataset**: OpenAI’s GSM8K (Grade School Math 8K), a collection of high-quality math problems designed to test problem-solving skills.
|
45 |
+
- **Enhancement**: After fine-tuning on GSM8K, additional reasoning layers were introduced using **DeepSeek-V3-Small**, leading to richer, more interpretable answers.
|
46 |
+
- **Training Objective**: Improve step-by-step mathematical reasoning and **enhance logical deductions** in model-generated responses.
|
47 |
+
|
48 |
+
I have adopted some code from Unsloth and here's an updated [notebook](https://colab.research.google.com/drive/1HV0YkyiTD55j1xLRBHwJ_q3ex82W5EXr?usp=sharing) on Colab. Please feel free to copy it and run it yourself.
|
49 |
+
|
50 |
+
You will need:
|
51 |
+
- Huggingface token
|
52 |
+
- Together.AI API Key
|
53 |
+
- Unsloth package
|
54 |
+
|
55 |
+
## How to Use Model via Terminal (Mac)
|
56 |
+
|
57 |
+
**Goal** Run Qwen-2.5-3B Instruct on Your Mac Using `llama.cpp`
|
58 |
+
|
59 |
+
Yes! You can run **Qwen-2.5-3B Instruct** on your Mac using `llama.cpp`. Here’s a step-by-step guide assuming you are starting from a clean macOS installation with only `pyenv` installed.
|
60 |
+
|
61 |
+
### **Step 1: Install Homebrew (if not installed)**
|
62 |
+
Homebrew is required to install `llama.cpp`.
|
63 |
+
|
64 |
+
1. Open **Terminal** (`Cmd + Space`, type `Terminal`, and press **Enter**).
|
65 |
+
2. Run:
|
66 |
+
```sh
|
67 |
+
/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"
|
68 |
+
```
|
69 |
+
3. After installation, add Homebrew to your PATH:
|
70 |
+
```sh
|
71 |
+
echo 'eval "$(/opt/homebrew/bin/brew shellenv)"' >> ~/.zprofile
|
72 |
+
eval "$(/opt/homebrew/bin/brew shellenv)"
|
73 |
+
```
|
74 |
+
|
75 |
+
---
|
76 |
+
|
77 |
+
### **Step 2: Install `llama.cpp` via Homebrew**
|
78 |
+
Run:
|
79 |
+
```sh
|
80 |
+
brew install llama.cpp
|
81 |
+
```
|
82 |
+
|
83 |
+
Once installed, you should be able to use `llama-cli`.
|
84 |
+
|
85 |
+
---
|
86 |
+
|
87 |
+
### **Step 3: Run Qwen-2.5-3B Instruct with `llama-cli`**
|
88 |
+
To run the model, execute:
|
89 |
+
```sh
|
90 |
+
llama-cli -hf eagle0504/qwen-2-5-3b-instruct-using-openai-gsm8k-gguf-data-enhanced-with-deepseek-v3-small:Q8_0
|
91 |
+
```
|
92 |
+
|
93 |
+
---
|
94 |
+
|
95 |
+
### **Step 4: Additional Configurations (If Needed)**
|
96 |
+
If you encounter issues or need finer control, you may want to:
|
97 |
+
|
98 |
+
#### **A. Verify Installation**
|
99 |
+
Check if `llama-cli` is installed:
|
100 |
+
```sh
|
101 |
+
llama-cli --version
|
102 |
+
```
|
103 |
+
If you see a version output, it’s installed correctly.
|
104 |
+
|
105 |
+
#### **B. Run with Explicit Model Path**
|
106 |
+
If the default Hugging Face loader doesn't work, you can manually download the model:
|
107 |
+
1. **Create a models directory:**
|
108 |
+
```sh
|
109 |
+
mkdir -p ~/llama_models && cd ~/llama_models
|
110 |
+
```
|
111 |
+
2. **Download the GGUF model file** from [Hugging Face](https://huggingface.co/eagle0504/qwen-2-5-3b-instruct-using-openai-gsm8k-gguf-data-enhanced-with-deepseek-v3-small):
|
112 |
+
```sh
|
113 |
+
wget https://huggingface.co/eagle0504/qwen-2-5-3b-instruct-using-openai-gsm8k-gguf-data-enhanced-with-deepseek-v3-small/resolve/main/Q8_0.gguf
|
114 |
+
```
|
115 |
+
3. **Run the model manually**:
|
116 |
+
```sh
|
117 |
+
llama-cli -m ~/llama_models/Q8_0.gguf
|
118 |
+
```
|
119 |
+
|
120 |
+
---
|
121 |
+
|
122 |
+
### **Step 5: Test the Model**
|
123 |
+
Try prompting it:
|
124 |
+
```sh
|
125 |
+
llama-cli -m ~/llama_models/Q8_0.gguf -p "Explain quantum computing in simple terms."
|
126 |
+
```
|
127 |
+
or interactively:
|
128 |
+
```sh
|
129 |
+
llama-cli -m ~/llama_models/Q8_0.gguf --interactive
|
130 |
+
```
|
131 |
+
|
132 |
+
## How to Use Model via Python
|
133 |
+
|
134 |
+
You can load this model with `transformers`:
|
135 |
+
|
136 |
+
```python
|
137 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
138 |
+
|
139 |
+
model_name = "eagle0504/qwen-2-5-3b-instruct-using-openai-gsm8k-gguf-data-enhanced-with-deepseek-v3-small"
|
140 |
+
|
141 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
142 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
143 |
+
|
144 |
+
# Example prompt
|
145 |
+
prompt = "A farmer has 24 apples. He gives 6 to each of his 3 children. How many does he have left?"
|
146 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
147 |
+
output = model.generate(**inputs, max_length=200)
|
148 |
+
print(tokenizer.decode(output[0], skip_special_tokens=True))
|
149 |
+
```
|
150 |
+
|
151 |
+
## Expected Performance
|
152 |
+
|
153 |
+
Compared to the base **Qwen2.5-3B-Instruct**, this fine-tuned model:
|
154 |
+
- Provides **more detailed explanations** when answering GSM8K math problems.
|
155 |
+
- Improves **logical reasoning** by incorporating DeepSeek-style augmented reasoning.
|
156 |
+
- Generates **clearer step-by-step solutions**, making it useful for educational or tutoring applications.
|
157 |
+
|
158 |
+
## Model Directory
|
159 |
+
|
160 |
+
The model is hosted on **Hugging Face Hub**:
|
161 |
+
👉 **[eagle0504/qwen-2-5-3b-instruct-using-openai-gsm8k-gguf-data-enhanced-with-deepseek-v3-small](https://huggingface.co/eagle0504/qwen-2-5-3b-instruct-using-openai-gsm8k-gguf-data-enhanced-with-deepseek-v3-small)**
|
162 |
+
|
163 |
+
## License
|
164 |
+
|
165 |
+
This model is released under the **MIT License**, allowing open usage and modifications.
|
166 |
+
|
167 |
+
---
|
168 |
+
|
169 |
+
If you have any questions or suggestions for improvements, feel free to reach out!
|