File size: 5,663 Bytes
a7b92d9
 
 
 
 
 
 
 
 
9972876
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c43c4a1
 
 
 
 
 
 
aeada4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9972876
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
---
license: mit
datasets:
- openai/gsm8k
language:
- en
base_model:
- Qwen/Qwen2.5-3B-Instruct
library_name: transformers
tags:
- fine-tuned
- qwen
- deepseek
- gsm8k
- reasoning
---

# Qwen 2.5-3B-Instruct Fine-Tuned on OpenAI GSM8K with DeepSeek Augmentation

## Model Overview

This model is a fine-tuned version of **Qwen/Qwen2.5-3B-Instruct**, optimized for mathematical reasoning tasks using the **OpenAI GSM8K** dataset. The fine-tuning process enhances the model's ability to generate step-by-step explanations for grade school math problems, incorporating **reasoning augmentation** through DeepSeek. The model improves upon GSM8K’s standard answers by integrating additional contextual reasoning derived from DeepSeek’s small model.

### Key Features:
- **Base Model**: Qwen 2.5-3B-Instruct
- **Fine-Tuned On**: OpenAI GSM8K dataset
- **Enhancement**: Answer augmentation with reasoning insights from **DeepSeek-V3-Small**
- **Improved Reasoning**: Model not only provides correct answers but also **augments** explanations with logical steps inspired by DeepSeek’s generative capabilities.

## Dataset & Training Details

- **Dataset**: OpenAI’s GSM8K (Grade School Math 8K), a collection of high-quality math problems designed to test problem-solving skills.
- **Enhancement**: After fine-tuning on GSM8K, additional reasoning layers were introduced using **DeepSeek-V3-Small**, leading to richer, more interpretable answers.
- **Training Objective**: Improve step-by-step mathematical reasoning and **enhance logical deductions** in model-generated responses.

I have adopted some code from Unsloth and here's an updated [notebook](https://colab.research.google.com/drive/1HV0YkyiTD55j1xLRBHwJ_q3ex82W5EXr?usp=sharing) on Colab. Please feel free to copy it and run it yourself. 

You will need:
- Huggingface token
- Together.AI API Key
- Unsloth package

## How to Use Model via Terminal (Mac)

**Goal** Run Qwen-2.5-3B Instruct on Your Mac Using `llama.cpp`

Yes! You can run **Qwen-2.5-3B Instruct** on your Mac using `llama.cpp`. Here’s a step-by-step guide assuming you are starting from a clean macOS installation with only `pyenv` installed.

### **Step 1: Install Homebrew (if not installed)**
Homebrew is required to install `llama.cpp`.

1. Open **Terminal** (`Cmd + Space`, type `Terminal`, and press **Enter**).
2. Run:
   ```sh
   /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"
   ```
3. After installation, add Homebrew to your PATH:
   ```sh
   echo 'eval "$(/opt/homebrew/bin/brew shellenv)"' >> ~/.zprofile
   eval "$(/opt/homebrew/bin/brew shellenv)"
   ```

---

### **Step 2: Install `llama.cpp` via Homebrew**
Run:
```sh
brew install llama.cpp
```

Once installed, you should be able to use `llama-cli`.

---

### **Step 3: Run Qwen-2.5-3B Instruct with `llama-cli`**
To run the model, execute:
```sh
llama-cli -hf eagle0504/qwen-2-5-3b-instruct-using-openai-gsm8k-gguf-data-enhanced-with-deepseek-v3-small:Q8_0
```

---

### **Step 4: Additional Configurations (If Needed)**
If you encounter issues or need finer control, you may want to:

#### **A. Verify Installation**
Check if `llama-cli` is installed:
```sh
llama-cli --version
```
If you see a version output, it’s installed correctly.

#### **B. Run with Explicit Model Path**
If the default Hugging Face loader doesn't work, you can manually download the model:
1. **Create a models directory:**
   ```sh
   mkdir -p ~/llama_models && cd ~/llama_models
   ```
2. **Download the GGUF model file** from [Hugging Face](https://huggingface.co/eagle0504/qwen-2-5-3b-instruct-using-openai-gsm8k-gguf-data-enhanced-with-deepseek-v3-small):
   ```sh
   wget https://huggingface.co/eagle0504/qwen-2-5-3b-instruct-using-openai-gsm8k-gguf-data-enhanced-with-deepseek-v3-small/resolve/main/Q8_0.gguf
   ```
3. **Run the model manually**:
   ```sh
   llama-cli -m ~/llama_models/Q8_0.gguf
   ```

---

### **Step 5: Test the Model**
Try prompting it:
```sh
llama-cli -m ~/llama_models/Q8_0.gguf -p "Explain quantum computing in simple terms."
```
or interactively:
```sh
llama-cli -m ~/llama_models/Q8_0.gguf --interactive
```

## How to Use Model via Python

You can load this model with `transformers`:

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "eagle0504/qwen-2-5-3b-instruct-using-openai-gsm8k-gguf-data-enhanced-with-deepseek-v3-small"

tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)

# Example prompt
prompt = "A farmer has 24 apples. He gives 6 to each of his 3 children. How many does he have left?"
inputs = tokenizer(prompt, return_tensors="pt")
output = model.generate(**inputs, max_length=200)
print(tokenizer.decode(output[0], skip_special_tokens=True))
```

## Expected Performance

Compared to the base **Qwen2.5-3B-Instruct**, this fine-tuned model:
- Provides **more detailed explanations** when answering GSM8K math problems.
- Improves **logical reasoning** by incorporating DeepSeek-style augmented reasoning.
- Generates **clearer step-by-step solutions**, making it useful for educational or tutoring applications.

## Model Directory

The model is hosted on **Hugging Face Hub**:
👉 **[eagle0504/qwen-2-5-3b-instruct-using-openai-gsm8k-gguf-data-enhanced-with-deepseek-v3-small](https://huggingface.co/eagle0504/qwen-2-5-3b-instruct-using-openai-gsm8k-gguf-data-enhanced-with-deepseek-v3-small)**

## License

This model is released under the **MIT License**, allowing open usage and modifications.

---

If you have any questions or suggestions for improvements, feel free to reach out!