eagle0504 commited on
Commit
567ab45
Β·
verified Β·
1 Parent(s): f737281

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +96 -167
README.md CHANGED
@@ -1,202 +1,131 @@
1
  ---
 
 
 
 
 
 
 
2
  library_name: transformers
3
  tags:
 
4
  - unsloth
5
  - trl
6
  - grpo
 
 
 
7
  ---
8
 
9
- # Model Card for Model ID
10
 
11
- <!-- Provide a quick summary of what the model is/does. -->
 
12
 
 
 
 
 
 
13
 
 
14
 
15
- ## Model Details
16
-
17
- ### Model Description
18
-
19
- <!-- Provide a longer summary of what this model is. -->
20
-
21
- This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated.
22
-
23
- - **Developed by:** [More Information Needed]
24
- - **Funded by [optional]:** [More Information Needed]
25
- - **Shared by [optional]:** [More Information Needed]
26
- - **Model type:** [More Information Needed]
27
- - **Language(s) (NLP):** [More Information Needed]
28
- - **License:** [More Information Needed]
29
- - **Finetuned from model [optional]:** [More Information Needed]
30
-
31
- ### Model Sources [optional]
32
-
33
- <!-- Provide the basic links for the model. -->
34
-
35
- - **Repository:** [More Information Needed]
36
- - **Paper [optional]:** [More Information Needed]
37
- - **Demo [optional]:** [More Information Needed]
38
-
39
- ## Uses
40
-
41
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
42
-
43
- ### Direct Use
44
-
45
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
46
-
47
- [More Information Needed]
48
-
49
- ### Downstream Use [optional]
50
-
51
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
52
-
53
- [More Information Needed]
54
-
55
- ### Out-of-Scope Use
56
-
57
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
58
-
59
- [More Information Needed]
60
-
61
- ## Bias, Risks, and Limitations
62
-
63
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
64
-
65
- [More Information Needed]
66
-
67
- ### Recommendations
68
-
69
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
70
-
71
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
72
-
73
- ## How to Get Started with the Model
74
-
75
- Use the code below to get started with the model.
76
-
77
- [More Information Needed]
78
-
79
- ## Training Details
80
-
81
- ### Training Data
82
-
83
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
84
-
85
- [More Information Needed]
86
-
87
- ### Training Procedure
88
-
89
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
90
-
91
- #### Preprocessing [optional]
92
-
93
- [More Information Needed]
94
-
95
-
96
- #### Training Hyperparameters
97
-
98
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
99
-
100
- #### Speeds, Sizes, Times [optional]
101
-
102
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
103
-
104
- [More Information Needed]
105
-
106
- ## Evaluation
107
-
108
- <!-- This section describes the evaluation protocols and provides the results. -->
109
-
110
- ### Testing Data, Factors & Metrics
111
-
112
- #### Testing Data
113
-
114
- <!-- This should link to a Dataset Card if possible. -->
115
-
116
- [More Information Needed]
117
-
118
- #### Factors
119
-
120
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
121
-
122
- [More Information Needed]
123
-
124
- #### Metrics
125
-
126
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
127
-
128
- [More Information Needed]
129
-
130
- ### Results
131
-
132
- [More Information Needed]
133
-
134
- #### Summary
135
-
136
-
137
-
138
- ## Model Examination [optional]
139
-
140
- <!-- Relevant interpretability work for the model goes here -->
141
-
142
- [More Information Needed]
143
-
144
- ## Environmental Impact
145
-
146
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
147
-
148
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
149
-
150
- - **Hardware Type:** [More Information Needed]
151
- - **Hours used:** [More Information Needed]
152
- - **Cloud Provider:** [More Information Needed]
153
- - **Compute Region:** [More Information Needed]
154
- - **Carbon Emitted:** [More Information Needed]
155
-
156
- ## Technical Specifications [optional]
157
 
158
- ### Model Architecture and Objective
159
 
160
- [More Information Needed]
 
161
 
162
- ### Compute Infrastructure
 
 
 
 
 
 
 
 
163
 
164
- [More Information Needed]
165
 
166
- #### Hardware
 
 
 
167
 
168
- [More Information Needed]
169
 
170
- #### Software
 
 
 
171
 
172
- [More Information Needed]
173
 
174
- ## Citation [optional]
 
 
 
 
 
175
 
176
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
177
 
178
- **BibTeX:**
 
179
 
180
- [More Information Needed]
 
181
 
182
- **APA:**
183
 
184
- [More Information Needed]
 
185
 
186
- ## Glossary [optional]
 
 
 
 
187
 
188
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
189
 
190
- [More Information Needed]
 
 
 
 
191
 
192
- ## More Information [optional]
193
 
194
- [More Information Needed]
 
 
195
 
196
- ## Model Card Authors [optional]
197
 
198
- [More Information Needed]
199
 
200
- ## Model Card Contact
201
 
202
- [More Information Needed]
 
 
1
  ---
2
+ license: mit
3
+ datasets:
4
+ - eagle0504/openai-gsm8k-enhanced-using-together-ai-deepseek-train8k-test1k-v1
5
+ language:
6
+ - en
7
+ base_model:
8
+ - deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
9
  library_name: transformers
10
  tags:
11
+ - fine-tuned
12
  - unsloth
13
  - trl
14
  - grpo
15
+ - deepseek
16
+ - gsm8k
17
+ - reasoning
18
  ---
19
 
20
+ # **DeepSeek-R1-Distill-Qwen-1.5B Fine-Tuned on GSM8K with Chain-of-Thought Augmentation**
21
 
22
+ ## **Model Overview**
23
+ This model is a fine-tuned version of **DeepSeek-R1-Distill-Qwen-1.5B**, trained on the **OpenAI GSM8K dataset**, augmented with **Chain-of-Thought (CoT) reasoning** using **DeepSeek-V3**. The fine-tuning process enhances the model’s **mathematical problem-solving abilities**, allowing it to provide **step-by-step solutions** with deeper reasoning.
24
 
25
+ ### **πŸ”Ή Key Features**
26
+ - **Base Model**: DeepSeek-R1-Distill-Qwen-1.5B
27
+ - **Fine-Tuned On**: GSM8K dataset with DeepSeek-V3-enhanced reasoning
28
+ - **Improved Mathematical Reasoning**: Generates detailed step-by-step CoT explanations
29
+ - **Optimized for GRPO Training**: Trained using `trl` and `unsloth` for efficient fine-tuning
30
 
31
+ ---
32
 
33
+ ## **πŸ“Š Dataset & Training Details**
34
+ - **Dataset**: `eagle0504/openai-gsm8k-enhanced-using-together-ai-deepseek-train8k-test1k-v1`
35
+ - **8K train samples**, **1K test samples**
36
+ - Contains **question**, **answer**, and **CoT reasoning**
37
+ - **Training Methodology**:
38
+ - Used **Guided Reinforcement Policy Optimization (GRPO)** via `trl`
39
+ - Applied **gradient accumulation** to manage larger batch sizes
40
+ - Integrated **DeepSeek-V3 augmentation** for enhanced logical reasoning
41
+ - **Fine-tuning Tools**:
42
+ - **Unsloth** for memory-efficient Llama-based tuning
43
+ - **Hugging Face Transformers** for model training
44
+
45
+ For those interested in replicating the fine-tuning process, I have shared an **updated Colab notebook** πŸ““:
46
+ πŸ”— [Colab Notebook](https://colab.research.google.com/drive/1HV0YkyiTD55j1xLRBHwJ_q3ex82W5EXr?usp=sharing)
47
+
48
+ You will need:
49
+ βœ… Hugging Face Token
50
+ βœ… Together.AI API Key
51
+ βœ… Unsloth Package
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52
 
53
+ ---
54
 
55
+ ## **πŸš€ How to Run the Model (Mac via `llama.cpp`)**
56
+ Yes! You can run this model **locally on macOS** using `llama.cpp`.
57
 
58
+ ### **1️⃣ Install Homebrew (If Not Installed)**
59
+ ```sh
60
+ /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"
61
+ ```
62
+ Then add Homebrew to your PATH:
63
+ ```sh
64
+ echo 'eval "$(/opt/homebrew/bin/brew shellenv)"' >> ~/.zprofile
65
+ eval "$(/opt/homebrew/bin/brew shellenv)"
66
+ ```
67
 
68
+ ---
69
 
70
+ ### **2️⃣ Install `llama.cpp`**
71
+ ```sh
72
+ brew install llama.cpp
73
+ ```
74
 
75
+ ---
76
 
77
+ ### **3️⃣ Run the Model with `llama-cli`**
78
+ ```sh
79
+ llama-cli -hf eagle0504/deepseek-r1-qwen-1.5b-gsm8k-enhanced-gguf:Q8_0
80
+ ```
81
 
82
+ ---
83
 
84
+ ### **4️⃣ Alternative: Run Locally via GGUF**
85
+ ```sh
86
+ mkdir -p ~/llama_models && cd ~/llama_models
87
+ wget https://huggingface.co/eagle0504/deepseek-r1-qwen-1.5b-gsm8k-enhanced-gguf/resolve/main/Q8_0.gguf
88
+ llama-cli -m ~/llama_models/Q8_0.gguf --interactive
89
+ ```
90
 
91
+ ---
92
 
93
+ ## **πŸ“Œ How to Use Model via Python (`transformers`)**
94
+ You can load the model with **Hugging Face Transformers**:
95
 
96
+ ```python
97
+ from transformers import AutoModelForCausalLM, AutoTokenizer
98
 
99
+ model_name = "eagle0504/deepseek-r1-qwen-1.5b-gsm8k-enhanced"
100
 
101
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
102
+ model = AutoModelForCausalLM.from_pretrained(model_name)
103
 
104
+ prompt = "A farmer has 24 apples. He gives 6 to each of his 3 children. How many does he have left?"
105
+ inputs = tokenizer(prompt, return_tensors="pt")
106
+ output = model.generate(**inputs, max_length=200)
107
+ print(tokenizer.decode(output[0], skip_special_tokens=True))
108
+ ```
109
 
110
+ ---
111
 
112
+ ## **πŸ”¬ Expected Performance**
113
+ Compared to the base **DeepSeek-R1-Distill-Qwen-1.5B**, this fine-tuned model:
114
+ - Provides **more detailed Chain-of-Thought (CoT) explanations** for GSM8K problems.
115
+ - Improves **logical reasoning and step-by-step answer formulation**.
116
+ - Generates **clearer, more structured solutions**, making it **ideal for educational use**.
117
 
118
+ ---
119
 
120
+ ## **πŸ—‚ Model Hosting & License**
121
+ πŸ“Œ **Model on Hugging Face Hub**:
122
+ πŸ‘‰ **[eagle0504/deepseek-r1-qwen-1.5b-gsm8k-enhanced](https://huggingface.co/eagle0504/deepseek-r1-qwen-1.5b-gsm8k-enhanced)**
123
 
124
+ πŸ“œ **License**: MIT License – Open for modification and distribution.
125
 
126
+ ---
127
 
128
+ If you have **feedback or ideas for improvement**, feel free to reach out! πŸš€πŸ”₯
129
 
130
+ #AI #MachineLearning #DeepSeek #GSM8K #LLM #ChainOfThought #HuggingFace #GRPO #Reasoning
131
+ ```