---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:156
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: Snowflake/snowflake-arctic-embed-l
widget:
- source_sentence: How does the size of DeepSeek v3 compare to Meta’s Llama 31 405B
model?
sentences:
- 'Terminology aside, I remain skeptical as to their utility based, once again,
on the challenge of gullibility. LLMs believe anything you tell them. Any systems
that attempts to make meaningful decisions on your behalf will run into the same
roadblock: how good is a travel agent, or a digital assistant, or even a research
tool if it can’t distinguish truth from fiction?
Just the other day Google Search was caught serving up an entirely fake description
of the non-existant movie “Encanto 2”. It turned out to be summarizing an imagined
movie listing from a fan fiction wiki.'
- 'DeepSeek v3 is a huge 685B parameter model—one of the largest openly licensed
models currently available, significantly bigger than the largest of Meta’s Llama
series, Llama 3.1 405B.
Benchmarks put it up there with Claude 3.5 Sonnet. Vibe benchmarks (aka the Chatbot
Arena) currently rank it 7th, just behind the Gemini 2.0 and OpenAI 4o/o1 models.
This is by far the highest ranking openly licensed model.
The really impressive thing about DeepSeek v3 is the training cost. The model
was trained on 2,788,000 H800 GPU hours at an estimated cost of $5,576,000. Llama
3.1 405B trained 30,840,000 GPU hours—11x that used by DeepSeek v3, for a model
that benchmarks slightly worse.'
- 'Against this photo of butterflies at the California Academy of Sciences:
A shallow dish, likely a hummingbird or butterfly feeder, is red. Pieces of orange
slices of fruit are visible inside the dish.
Two butterflies are positioned in the feeder, one is a dark brown/black butterfly
with white/cream-colored markings. The other is a large, brown butterfly with
patterns of lighter brown, beige, and black markings, including prominent eye
spots. The larger brown butterfly appears to be feeding on the fruit.'
- source_sentence: How does the author compare the difficulty of training an LLM to
another complex task?
sentences:
- '“Agents” still haven’t really happened yet
I find the term “agents” extremely frustrating. It lacks a single, clear and widely
understood meaning... but the people who use the term never seem to acknowledge
that.
If you tell me that you are building “agents”, you’ve conveyed almost no information
to me at all. Without reading your mind I have no way of telling which of the
dozens of possible definitions you are talking about.'
- 'So training an LLM still isn’t something a hobbyist can afford, but it’s no longer
the sole domain of the super-rich. I like to compare the difficulty of training
an LLM to that of building a suspension bridge—not trivial, but hundreds of countries
around the world have figured out how to do it. (Correction: Wikipedia’s Suspension
bridges by country category lists 44 countries).
You can run LLMs on your own devices
In January of this year, I thought it would be years before I could run a useful
LLM on my own computer. GPT-3 and 3.5 were pretty much the only games in town,
and I thought that even if the model weights were available it would take a $10,000+
server to run them.'
- 'This prompt-driven custom interface feature is so powerful and easy to build
(once you’ve figured out the gnarly details of browser sandboxing) that I expect
it to show up as a feature in a wide range of products in 2025.
Universal access to the best models lasted for just a few short months
For a few short months this year all three of the best available models—GPT-4o,
Claude 3.5 Sonnet and Gemini 1.5 Pro—were freely available to most of the world.'
- source_sentence: What is the new approach to scaling models mentioned in the context?
sentences:
- 'So far, I think they’re a net positive. I’ve used them on a personal level to
improve my productivity (and entertain myself) in all sorts of different ways.
I think people who learn how to use them effectively can gain a significant boost
to their quality of life.
A lot of people are yet to be sold on their value! Some think their negatives
outweigh their positives, some think they are all hot air, and some even think
they represent an existential threat to humanity.
They’re actually quite easy to build
The most surprising thing we’ve learned about LLMs this year is that they’re actually
quite easy to build.'
- 'The biggest innovation here is that it opens up a new way to scale a model: instead
of improving model performance purely through additional compute at training time,
models can now take on harder problems by spending more compute on inference.
The sequel to o1, o3 (they skipped “o2” for European trademark reasons) was announced
on 20th December with an impressive result against the ARC-AGI benchmark, albeit
one that likely involved more than $1,000,000 of compute time expense!
o3 is expected to ship in January. I doubt many people have real-world problems
that would benefit from that level of compute expenditure—I certainly don’t!—but
it appears to be a genuine next step in LLM architecture for taking on much harder
problems.'
- 'Language Models are gullible. They “believe” what we tell them—what’s in their
training data, then what’s in the fine-tuning data, then what’s in the prompt.
In order to be useful tools for us, we need them to believe what we feed them!
But it turns out a lot of the things we want to build need them not to be gullible.
Everyone wants an AI personal assistant. If you hired a real-world personal assistant
who believed everything that anyone told them, you would quickly find that their
ability to positively impact your life was severely limited.'
- source_sentence: When was Anthropic’s Claude 3 series initially launched?
sentences:
- 'Prompt injection is a natural consequence of this gulibility. I’ve seen precious
little progress on tackling that problem in 2024, and we’ve been talking about
it since September 2022.
I’m beginning to see the most popular idea of “agents” as dependent on AGI itself.
A model that’s robust against gulliblity is a very tall order indeed.
Evals really matter
Anthropic’s Amanda Askell (responsible for much of the work behind Claude’s Character):'
- 'A year ago, the only organization that had released a generally useful LLM was
OpenAI. We’ve now seen better-than-GPT-3 class models produced by Anthropic, Mistral,
Google, Meta, EleutherAI, Stability AI, TII in Abu Dhabi (Falcon), Microsoft Research,
xAI, Replit, Baidu and a bunch of other organizations.
The training cost (hardware and electricity) is still significant—initially millions
of dollars, but that seems to have dropped to the tens of thousands already. Microsoft’s
Phi-2 claims to have used “14 days on 96 A100 GPUs”, which works out at around
$35,000 using current Lambda pricing.'
- 'Getting back to models that beat GPT-4: Anthropic’s Claude 3 series launched
in March, and Claude 3 Opus quickly became my new favourite daily-driver. They
upped the ante even more in June with the launch of Claude 3.5 Sonnet—a model
that is still my favourite six months later (though it got a significant upgrade
on October 22, confusingly keeping the same 3.5 version number. Anthropic fans
have since taken to calling it Claude 3.6).'
- source_sentence: Why might fine-tuning an existing LLM be more accessible to hobbyists
than training one from scratch?
sentences:
- 'I run a bunch of them on my laptop. I run Mistral 7B (a surprisingly great model)
on my iPhone. You can install several different apps to get your own, local, completely
private LLM. My own LLM project provides a CLI tool for running an array of different
models via plugins.
You can even run them entirely in your browser using WebAssembly and the latest
Chrome!
Hobbyists can build their own fine-tuned models
I said earlier that building an LLM was still out of reach of hobbyists. That
may be true for training from scratch, but fine-tuning one of those models is
another matter entirely.'
- 'Intuitively, one would expect that systems this powerful would take millions
of lines of complex code. Instead, it turns out a few hundred lines of Python
is genuinely enough to train a basic version!
What matters most is the training data. You need a lot of data to make these
things work, and the quantity and quality of the training data appears to be the
most important factor in how good the resulting model is.
If you can gather the right data, and afford to pay for the GPUs to train it,
you can build an LLM.'
- 'Nothing yet from Anthropic or Meta but I would be very surprised if they don’t
have their own inference-scaling models in the works. Meta published a relevant
paper Training Large Language Models to Reason in a Continuous Latent Space in
December.
Was the best currently available LLM trained in China for less than $6m?
Not quite, but almost! It does make for a great attention-grabbing headline.
The big news to end the year was the release of DeepSeek v3—dropped on Hugging
Face on Christmas Day without so much as a README file, then followed by documentation
and a paper the day after that.'
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-l
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy@1
value: 0.9166666666666666
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 1.0
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 1.0
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1.0
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.9166666666666666
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3333333333333333
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.20000000000000004
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.10000000000000002
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.9166666666666666
name: Cosine Recall@1
- type: cosine_recall@3
value: 1.0
name: Cosine Recall@3
- type: cosine_recall@5
value: 1.0
name: Cosine Recall@5
- type: cosine_recall@10
value: 1.0
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9692441461309548
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9583333333333334
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9583333333333334
name: Cosine Map@100
---
# SentenceTransformer based on Snowflake/snowflake-arctic-embed-l
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-l](https://huggingface.co/Snowflake/snowflake-arctic-embed-l). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Snowflake/snowflake-arctic-embed-l](https://huggingface.co/Snowflake/snowflake-arctic-embed-l)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1024 dimensions
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("dwb2023/legal-ft-c53d04b6-ee03-4160-9525-a7af282c08e8")
# Run inference
sentences = [
'Why might fine-tuning an existing LLM be more accessible to hobbyists than training one from scratch?',
'I run a bunch of them on my laptop. I run Mistral 7B (a surprisingly great model) on my iPhone. You can install several different apps to get your own, local, completely private LLM. My own LLM project provides a CLI tool for running an array of different models via plugins.\nYou can even run them entirely in your browser using WebAssembly and the latest Chrome!\nHobbyists can build their own fine-tuned models\nI said earlier that building an LLM was still out of reach of hobbyists. That may be true for training from scratch, but fine-tuning one of those models is another matter entirely.',
'Nothing yet from Anthropic or Meta but I would be very surprised if they don’t have their own inference-scaling models in the works. Meta published a relevant paper Training Large Language Models to Reason in a Continuous Latent Space in December.\nWas the best currently available LLM trained in China for less than $6m?\nNot quite, but almost! It does make for a great attention-grabbing headline.\nThe big news to end the year was the release of DeepSeek v3—dropped on Hugging Face on Christmas Day without so much as a README file, then followed by documentation and a paper the day after that.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Information Retrieval
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.9167 |
| cosine_accuracy@3 | 1.0 |
| cosine_accuracy@5 | 1.0 |
| cosine_accuracy@10 | 1.0 |
| cosine_precision@1 | 0.9167 |
| cosine_precision@3 | 0.3333 |
| cosine_precision@5 | 0.2 |
| cosine_precision@10 | 0.1 |
| cosine_recall@1 | 0.9167 |
| cosine_recall@3 | 1.0 |
| cosine_recall@5 | 1.0 |
| cosine_recall@10 | 1.0 |
| **cosine_ndcg@10** | **0.9692** |
| cosine_mrr@10 | 0.9583 |
| cosine_map@100 | 0.9583 |
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 156 training samples
* Columns: sentence_0
and sentence_1
* Approximate statistics based on the first 156 samples:
| | sentence_0 | sentence_1 |
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string |
| details |
When did Meta release the original Llama model?
| Then in February, Meta released Llama. And a few weeks later in March, Georgi Gerganov released code that got it working on a MacBook.
I wrote about how Large language models are having their Stable Diffusion moment, and with hindsight that was a very good call!
This unleashed a whirlwind of innovation, which was accelerated further in July when Meta released Llama 2—an improved version which, crucially, included permission for commercial use.
Today there are literally thousands of LLMs that can be run locally, on all manner of different devices.
|
| What was significant about the release of Llama 2 in July?
| Then in February, Meta released Llama. And a few weeks later in March, Georgi Gerganov released code that got it working on a MacBook.
I wrote about how Large language models are having their Stable Diffusion moment, and with hindsight that was a very good call!
This unleashed a whirlwind of innovation, which was accelerated further in July when Meta released Llama 2—an improved version which, crucially, included permission for commercial use.
Today there are literally thousands of LLMs that can be run locally, on all manner of different devices.
|
| What are some companies mentioned that have developed multi-modal audio models?
| Your browser does not support the audio element.
OpenAI aren’t the only group with a multi-modal audio model. Google’s Gemini also accepts audio input, and the Google Gemini apps can speak in a similar way to ChatGPT now. Amazon also pre-announced voice mode for Amazon Nova, but that’s meant to roll out in Q1 of 2025.
Google’s NotebookLM, released in September, took audio output to a new level by producing spookily realistic conversations between two “podcast hosts” about anything you fed into their tool. They later added custom instructions, so naturally I turned them into pelicans:
Your browser does not support the audio element.
|
* Loss: [MatryoshkaLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 10
- `per_device_eval_batch_size`: 10
- `num_train_epochs`: 10
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters