Upload folder using huggingface_hub
Browse files
README.md
CHANGED
@@ -1,3 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# MedEmbed-large-v0.1 ONNX Model
|
2 |
|
3 |
This repository contains an ONNX version of the MedEmbed-large-v0.1 model, which was originally a SentenceTransformer model.
|
@@ -6,6 +41,8 @@ This repository contains an ONNX version of the MedEmbed-large-v0.1 model, which
|
|
6 |
|
7 |
The original MedEmbed-large-v0.1 model is a sentence embedding model specialized for medical text. This ONNX version maintains the same functionality but is optimized for deployment in production environments.
|
8 |
|
|
|
|
|
9 |
## ONNX Conversion
|
10 |
|
11 |
The model was converted to ONNX format using PyTorch's `torch.onnx.export` functionality with ONNX opset version 14.
|
@@ -46,4 +83,115 @@ embeddings = session.run(None, onnx_inputs)[0]
|
|
46 |
|
47 |
## Usage with OpenSearch
|
48 |
|
49 |
-
This model can be
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: en
|
3 |
+
license: mit
|
4 |
+
tags:
|
5 |
+
- medical
|
6 |
+
- sentence-transformers
|
7 |
+
- text-embedding
|
8 |
+
- sentence-similarity
|
9 |
+
- onnx
|
10 |
+
- semantic-search
|
11 |
+
- opensearch
|
12 |
+
- healthcare
|
13 |
+
- medical-embeddings
|
14 |
+
datasets:
|
15 |
+
- abhinand/MedEmbed-corpus
|
16 |
+
metrics:
|
17 |
+
- cosine-similarity
|
18 |
+
library_name: sentence-transformers
|
19 |
+
pipeline_tag: sentence-similarity
|
20 |
+
model-index:
|
21 |
+
- name: MedEmbed-large-v0.1-onnx
|
22 |
+
results:
|
23 |
+
- task:
|
24 |
+
type: Sentence Similarity
|
25 |
+
name: Semantic Retrieval
|
26 |
+
dataset:
|
27 |
+
type: abhinand/MedEmbed-corpus
|
28 |
+
name: MedEmbed corpus
|
29 |
+
metrics:
|
30 |
+
- type: cosine-similarity
|
31 |
+
value: N/A # Replace with actual value if available
|
32 |
+
base_model: abhinand/MedEmbed-Large-v0.1
|
33 |
+
inference: true
|
34 |
+
---
|
35 |
+
|
36 |
# MedEmbed-large-v0.1 ONNX Model
|
37 |
|
38 |
This repository contains an ONNX version of the MedEmbed-large-v0.1 model, which was originally a SentenceTransformer model.
|
|
|
41 |
|
42 |
The original MedEmbed-large-v0.1 model is a sentence embedding model specialized for medical text. This ONNX version maintains the same functionality but is optimized for deployment in production environments.
|
43 |
|
44 |
+
This model is a derivative of [abhinand/MedEmbed-Large-v0.1](https://huggingface.co/abhinand/MedEmbed-Large-v0.1), which itself is a fine-tune of [abhinand/MedEmbed-base-v0.1](https://huggingface.co/abhinand/MedEmbed-base-v0.1).
|
45 |
+
|
46 |
## ONNX Conversion
|
47 |
|
48 |
The model was converted to ONNX format using PyTorch's `torch.onnx.export` functionality with ONNX opset version 14.
|
|
|
83 |
|
84 |
## Usage with OpenSearch
|
85 |
|
86 |
+
This model can be integrated with OpenSearch for neural search capabilities. Here's how to set it up:
|
87 |
+
|
88 |
+
### 1. Upload the model to OpenSearch
|
89 |
+
|
90 |
+
```bash
|
91 |
+
# Create a zip file containing your model files
|
92 |
+
zip -r medembedlarge.zip MedEmbed-large-v0.1.onnx config.json tokenizer_config.json tokenizer.json vocab.txt special_tokens_map.json
|
93 |
+
|
94 |
+
# Upload the model using the OpenSearch REST API
|
95 |
+
curl -XPUT "https://your-opensearch-endpoint/_plugins/_ml/models/medembedlarge" \
|
96 |
+
-H "Content-Type: application/json" \
|
97 |
+
-d '{
|
98 |
+
"name": "medembedlarge",
|
99 |
+
"version": "1.0.0",
|
100 |
+
"model_format": "ONNX",
|
101 |
+
"model_config": {
|
102 |
+
"model_type": "bert",
|
103 |
+
"embedding_dimension": 768,
|
104 |
+
"framework_type": "sentence_transformers"
|
105 |
+
}
|
106 |
+
}' -u "admin:admin"
|
107 |
+
|
108 |
+
# Upload the model file
|
109 |
+
curl -XPOST "https://your-opensearch-endpoint/_plugins/_ml/models/medembedlarge/_upload" \
|
110 |
+
-H "Content-Type: multipart/form-data" \
|
111 |
+
-F "[email protected]" -u "admin:admin"
|
112 |
+
```
|
113 |
+
|
114 |
+
### 2. Deploy the model
|
115 |
+
|
116 |
+
```bash
|
117 |
+
curl -XPOST "https://your-opensearch-endpoint/_plugins/_ml/models/medembedlarge/_deploy" \
|
118 |
+
-H "Content-Type: application/json" -u "admin:admin"
|
119 |
+
```
|
120 |
+
|
121 |
+
### 3. Create a neural search pipeline
|
122 |
+
|
123 |
+
```bash
|
124 |
+
curl -XPUT "https://your-opensearch-endpoint/_plugins/_ml/pipelines/medembedlarge-pipeline" \
|
125 |
+
-H "Content-Type: application/json" \
|
126 |
+
-d '{
|
127 |
+
"description": "Neural search pipeline for medical text",
|
128 |
+
"processors": [
|
129 |
+
{
|
130 |
+
"text_embedding": {
|
131 |
+
"model_id": "medembedlarge",
|
132 |
+
"field_map": {
|
133 |
+
"text_field": "text_embedding"
|
134 |
+
}
|
135 |
+
}
|
136 |
+
}
|
137 |
+
]
|
138 |
+
}' -u "admin:admin"
|
139 |
+
```
|
140 |
+
|
141 |
+
### 4. Create an index with embedding field
|
142 |
+
|
143 |
+
```bash
|
144 |
+
curl -XPUT "https://your-opensearch-endpoint/medical-documents" \
|
145 |
+
-H "Content-Type: application/json" \
|
146 |
+
-d '{
|
147 |
+
"settings": {
|
148 |
+
"index.plugins.search_pipeline.default": "medembedlarge-pipeline"
|
149 |
+
},
|
150 |
+
"mappings": {
|
151 |
+
"properties": {
|
152 |
+
"text_field": {
|
153 |
+
"type": "text"
|
154 |
+
},
|
155 |
+
"text_embedding": {
|
156 |
+
"type": "knn_vector",
|
157 |
+
"dimension": 768,
|
158 |
+
"method": {
|
159 |
+
"name": "hnsw",
|
160 |
+
"space_type": "cosinesimil",
|
161 |
+
"engine": "nmslib"
|
162 |
+
}
|
163 |
+
}
|
164 |
+
}
|
165 |
+
}
|
166 |
+
}' -u "admin:admin"
|
167 |
+
```
|
168 |
+
|
169 |
+
### 5. Index documents with the neural search pipeline
|
170 |
+
|
171 |
+
```bash
|
172 |
+
curl -XPOST "https://your-opensearch-endpoint/medical-documents/_doc" \
|
173 |
+
-H "Content-Type: application/json" \
|
174 |
+
-d '{
|
175 |
+
"text_field": "Patient presented with symptoms of hypertension and diabetes."
|
176 |
+
}' -u "admin:admin"
|
177 |
+
```
|
178 |
+
|
179 |
+
### 6. Perform a neural search query
|
180 |
+
|
181 |
+
```bash
|
182 |
+
curl -XPOST "https://your-opensearch-endpoint/medical-documents/_search" \
|
183 |
+
-H "Content-Type: application/json" \
|
184 |
+
-d '{
|
185 |
+
"query": {
|
186 |
+
"neural": {
|
187 |
+
"text_embedding": {
|
188 |
+
"query_text": "hypertension treatment options",
|
189 |
+
"model_id": "medembedlarge",
|
190 |
+
"k": 10
|
191 |
+
}
|
192 |
+
}
|
193 |
+
}
|
194 |
+
}' -u "admin:admin"
|
195 |
+
```
|
196 |
+
|
197 |
+
Note: Replace "https://your-opensearch-endpoint" with your actual OpenSearch endpoint, and adjust authentication credentials as needed for your environment.
|