Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,110 @@
|
|
1 |
---
|
2 |
license: cc-by-4.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: cc-by-4.0
|
3 |
+
datasets:
|
4 |
+
- dsfsi/vukuzenzele-monolingual
|
5 |
+
- nchlt
|
6 |
+
- dsfsi/PuoData
|
7 |
+
language:
|
8 |
+
- tn
|
9 |
+
library_name: transformers
|
10 |
+
pipeline_tag: fill-mask
|
11 |
+
tags:
|
12 |
+
- masked langauge model
|
13 |
+
- setswana
|
14 |
---
|
15 |
+
# PuoBertaJW300: A curated Setswana Language Model (trained on PuoData + JW300 Setswana)
|
16 |
+
|
17 |
+
A Roberta-based language model specially designed for Setswana, using the new PuoData dataset + JW300 corpora.
|
18 |
+
|
19 |
+
## Model Details
|
20 |
+
|
21 |
+
|
22 |
+
### Model Description
|
23 |
+
|
24 |
+
This is a masked language model trained on Setswana corpora, making it a valuable tool for a range of downstream applications from translation to content creation. It's powered by the PuoData dataset to ensure accuracy and cultural relevance.
|
25 |
+
|
26 |
+
- **Developed by:** Vukosi Marivate ([@vukosi](https://huggingface.co/@vukosi)), Moseli Mots'Oehli ([@MoseliMotsoehli](https://huggingface.co/@MoseliMotsoehli)) , Valencia Wagner, Richard Lastrucci and Isheanesu Dzingirai
|
27 |
+
- **Model type:** RoBERTa Model
|
28 |
+
- **Language(s) (NLP):** Setswana
|
29 |
+
- **License:** CC BY 4.0
|
30 |
+
|
31 |
+
|
32 |
+
### Usage
|
33 |
+
|
34 |
+
Use this model filling in masks or finetune for downstream tasks. Here’s a simple example for masked prediction:
|
35 |
+
|
36 |
+
```python
|
37 |
+
from transformers import RobertaTokenizer, RobertaModel
|
38 |
+
|
39 |
+
# Load model and tokenizer
|
40 |
+
model = RobertaModel.from_pretrained('dsfsi/PuoBERTaJW300')
|
41 |
+
tokenizer = RobertaTokenizer.from_pretrained('dsfsi/PuoBERTaJW300')
|
42 |
+
|
43 |
+
```
|
44 |
+
|
45 |
+
### Downstream Use
|
46 |
+
|
47 |
+
## Downstream Performance
|
48 |
+
|
49 |
+
### MasakhaPOS
|
50 |
+
|
51 |
+
Performance of models on the MasakhaPOS downstream task.
|
52 |
+
|
53 |
+
| Model | Test Performance |
|
54 |
+
|---|---|
|
55 |
+
| **Multilingual Models** | |
|
56 |
+
| AfroLM | 83.8 |
|
57 |
+
| AfriBERTa | 82.5 |
|
58 |
+
| AfroXLMR-base | 82.7 |
|
59 |
+
| AfroXLMR-large | 83.0 |
|
60 |
+
| **Monolingual Models** | |
|
61 |
+
| NCHLT TSN RoBERTa | 82.3 |
|
62 |
+
| PuoBERTa | 83.4 |
|
63 |
+
| PuoBERTa+JW300 | **84.1** |
|
64 |
+
|
65 |
+
### MasakhaNER
|
66 |
+
|
67 |
+
Performance of models on the MasakhaNER downstream task.
|
68 |
+
|
69 |
+
| Model | Test Performance (f1 score) |
|
70 |
+
|---|---|
|
71 |
+
| **Multilingual Models** | |
|
72 |
+
| AfriBERTa | 83.2 |
|
73 |
+
| AfroXLMR-base | 87.7 |
|
74 |
+
| AfroXLMR-large | 89.4 |
|
75 |
+
| **Monolingual Models** | |
|
76 |
+
| NCHLT TSN RoBERTa | 74.2 |
|
77 |
+
| PuoBERTa | 78.2 |
|
78 |
+
| PuoBERTa+JW300 | **80.2** |
|
79 |
+
|
80 |
+
## Dataset
|
81 |
+
|
82 |
+
We used the PuoData dataset, a rich source of Setswana text, ensuring that our model is well-trained and culturally attuned.\\
|
83 |
+
|
84 |
+
## Citation Information
|
85 |
+
|
86 |
+
Bibtex Refrence
|
87 |
+
|
88 |
+
```
|
89 |
+
@article{marivatePuoBERTa2023,
|
90 |
+
title={PuoBERTa: Training and evaluation of a curated language model for Setswana},
|
91 |
+
author={Vukosi Marivate and Moseli Mots'Oehli and Valencia Wagner and Richard Lastrucci and Isheanesu Dzingirai},
|
92 |
+
journal={ArXiv},
|
93 |
+
}
|
94 |
+
```
|
95 |
+
|
96 |
+
## Contributing
|
97 |
+
|
98 |
+
Your contributions are welcome! Feel free to improve the model.
|
99 |
+
|
100 |
+
## Model Card Authors
|
101 |
+
|
102 |
+
Vukosi Marivate
|
103 |
+
|
104 |
+
## Model Card Contact
|
105 |
+
|
106 |
+
For more details, reach out or check our [website](https://dsfsi.github.io/).
|
107 |
+
|
108 |
+
Email: [email protected]
|
109 |
+
|
110 |
+
**Enjoy exploring Setswana through AI!**
|