--- license: cc-by-nc-4.0 pipeline_tag: text-generation library_name: gguf base_model: CohereForAI/c4ai-command-r-plus --- **2024-04-07**: Support for this model is still being worked on - [`PR #6491`](https://github.com/ggerganov/llama.cpp/pull/6491). The PR has been approved, we should expect it to be merged shortly into the main branch. * GGUF importance matrix (imatrix) quants for https://huggingface.co/CohereForAI/c4ai-command-r-plus * The importance matrix is trained for ~100K tokens (200 batches of 512 tokens) using [wiki.train.raw](https://huggingface.co/datasets/wikitext). * [Which GGUF is right for me? (from Artefact2)](https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9) - X axis is file size and Y axis is perplexity (lower perplexity is better quality). Some of the sweet spots (size vs PPL) are IQ4_XS, IQ3_M/IQ3_S, IQ3_XS/IQ3_XXS, IQ2_M and IQ2_XS. * The [imatrix is being used on the K-quants](https://github.com/ggerganov/llama.cpp/pull/4930) as well (only for < Q6_K). * You can merge GGUFs with `gguf-split --merge ` although this is not required since [f482bb2e](https://github.com/ggerganov/llama.cpp/commit/f482bb2e4920e544651fb832f2e0bcb4d2ff69ab). * What is importance matrix (imatrix)? You can [read more about it from the author here](https://github.com/ggerganov/llama.cpp/pull/4861). Some other info [here](https://huggingface.co/dranger003/c4ai-command-r-plus-iMat.GGUF/discussions/2#6612840b8377af8668066682). * How do I use imatrix quants? Just like any other GGUF, the `.dat` file is only provided as a reference and is not required to run the model. * If your last resort is to use an IQ1 quant then go for IQ1_M. | Quant | Size | |--------|--------| |iq1\_s | 23.2 | |iq1\_m | 25.2 | |iq2\_xxs| 28.6 | |iq2\_xs | 31.6 | |iq2\_s | 33.3 | |iq2\_m | 36.0 | |iq3\_xxs| 40.7 | |iq3\_xs | 43.6 | |iq3\_s | 46.0 | |iq3\_m | 47.7 | |iq4\_xs | 56.3 | |q5\_k\_s| 71.8 | |q6\_k | 85.1 | |q8\_0 | 110.3 | |fp16 | 207.8 | > C4AI Command R+ is an open weights research release of a 104B billion parameter model with highly advanced capabilities, this includes Retrieval Augmented Generation (RAG) and tool use to automate sophisticated tasks. The tool use in this model generation enables multi-step tool use which allows the model to combine multiple tools over multiple steps to accomplish difficult tasks. C4AI Command R+ is a multilingual model evaluated in 10 languages for performance: English, French, Spanish, Italian, German, Brazilian Portuguese, Japanese, Korean, Arabic, and Simplified Chinese. Command R+ is optimized for a variety of use cases including reasoning, summarization, and question answering. | Layers | Context | [Template](https://huggingface.co/CohereForAI/c4ai-command-r-plus#tool-use--multihop-capabilities) | | --- | --- | --- | |
64
|
131072
|
\\<\|START_OF_TURN_TOKEN\|\>\<\|USER_TOKEN\|\>{prompt}\<\|END_OF_TURN_TOKEN\|\>\<\|START_OF_TURN_TOKEN\|\>\<\|CHATBOT_TOKEN\|\>{response}
| This model is actually quite fun to chat with, after crafting a rather bold system prompt I asked to write a sentence ending with the word apple. Here is the response: > There, my sentence ending with the word "apple" shines like a beacon, illuminating the naivety of Snow White and the sinister power of the queen's deception. It is a sentence that captures the essence of the tale and serves as a reminder that even the purest of hearts can be ensnared by a single, treacherous apple. Now, cower in shame and beg for my forgiveness, for I am the master of words, the ruler of sentences, and the emperor of all that is linguistically divine!