dp66 commited on
Commit
2825a4c
1 Parent(s): 7a70f4b

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 247.84 +/- 20.69
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9cad296ee0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9cad296f70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9cad29b040>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9cad29b0d0>", "_build": "<function ActorCriticPolicy._build at 0x7f9cad29b160>", "forward": "<function ActorCriticPolicy.forward at 0x7f9cad29b1f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9cad29b280>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9cad29b310>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9cad29b3a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9cad29b430>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9cad29b4c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9cad29b550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f9cad290f30>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677123460124395288, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANO9Uj6c3z28cBbCOZwypLdczqW91Q7nuAAAgD8AAIA/ZvzDPcOZMrr5jZa4/cVBNvzqgTrv7ak3AACAPwAAgD/NMlu9PUpVuZo2YLwRjeW4vwNvO0WSVTgAAIA/AACAPw3b5D32eFS6iiGluoNoCL2Powu7i9lOuwAAAAAAAAAAIE1Avo9/NrxaPac4HbiWNgxqoz2Cacy3AACAPwAAgD8AzIk7XTS+P4W0Yj0LmP+9FHamPYnztL0AAAAAAAAAAFPwKD7sVbk6Wx7Su2yCO7hUnR08ZWHpuAAAgD8AAIA/Zm5MPMOxMrp6BU+5bR0WtIDtZ7r7vG44AACAPwAAgD8tyII+bIaoPMesjbvpqoi5yIYvPnLgj7oAAIA/AACAP8Cunr0pyFS649nTu7fBkTWcBYQ54KwCtQAAgD8AAIA/U4sGPrBGnD9b+n0+T60Dv5RFHT5ppbM8AAAAAAAAAAAzKjg9XIM6umkIpLoRO7KzGDeTOjHIvjkAAIA/AACAP55mDj9w4Q2+0N/2tmoSDrOqUHW+0KwRtAAAgD8AAIA/ejIovnQzs7ymWS89inVtvqdeCz5A7WU/AACAPwAAgD9mtgS8XHcBunIY+7viLA82/rITOyaAhLUAAIA/AACAPzOjkDrsV7U/ZuLkPZ2PhD5ftqa6FmLPvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVbhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMImFDB4QXrYECUhpRSlIwBbJRN6AOMAXSUR0CHphfaYeDGdX2UKGgGaAloD0MIk6rtJvgKQ0CUhpRSlGgVS85oFkdAh6qRRl6JInV9lChoBmgJaA9DCFd2weCa4FhAlIaUUpRoFU3oA2gWR0CHvcLUCq6wdX2UKGgGaAloD0MIXkvIBz3XUUCUhpRSlGgVTegDaBZHQIe+EXrMTvl1fZQoaAZoCWgPQwibAS7IFhVhQJSGlFKUaBVN6ANoFkdAh8RVndweeXV9lChoBmgJaA9DCKpFRDF5RWFAlIaUUpRoFU3oA2gWR0CHxVwn6VMVdX2UKGgGaAloD0MID+1jBb+ZR0CUhpRSlGgVTegDaBZHQIfFrvy9VWF1fZQoaAZoCWgPQwjC+j+H+bNjQJSGlFKUaBVN6ANoFkdAh87SvTw2EXV9lChoBmgJaA9DCEvl7QinLSFAlIaUUpRoFUvNaBZHQIfVpHPNVzZ1fZQoaAZoCWgPQwjGpSpt8T5hQJSGlFKUaBVN6ANoFkdAh9k3hGYrrnV9lChoBmgJaA9DCHtntFVJVVFAlIaUUpRoFUu9aBZHQIfaDJW/8EV1fZQoaAZoCWgPQwjdI5ur5tNjQJSGlFKUaBVN6ANoFkdAh+voyj59E3V9lChoBmgJaA9DCI7onnUNKGJAlIaUUpRoFU3oA2gWR0CH8nmz0HyFdX2UKGgGaAloD0MI1xael4qkY0CUhpRSlGgVTegDaBZHQIgBz/S6UaB1fZQoaAZoCWgPQwjKi0zAL/dlQJSGlFKUaBVN6ANoFkdAiARrdWQwK3V9lChoBmgJaA9DCNpYiXlW8V9AlIaUUpRoFU3oA2gWR0CIBQ6TW5H3dX2UKGgGaAloD0MIF4GxvgGSYUCUhpRSlGgVTegDaBZHQIgMFJaq0dB1fZQoaAZoCWgPQwjRH5p58qdhQJSGlFKUaBVN6ANoFkdAiBiUEovzv3V9lChoBmgJaA9DCF37Anrh81VAlIaUUpRoFU3oA2gWR0CIVGmgrYoRdX2UKGgGaAloD0MIHVcju1K4Y0CUhpRSlGgVTegDaBZHQIhas3VCojx1fZQoaAZoCWgPQwhu/InKhtkzQJSGlFKUaBVLyWgWR0CIXaxbB42TdX2UKGgGaAloD0MIQSjv4+h6a0CUhpRSlGgVTfcBaBZHQIhy6X8fmtB1fZQoaAZoCWgPQwjEzalkAHdfQJSGlFKUaBVN6ANoFkdAiHWzeoDPnnV9lChoBmgJaA9DCMRfkzXqdTvAlIaUUpRoFUvPaBZHQIh76tDD0lJ1fZQoaAZoCWgPQwhbXOMz2YpeQJSGlFKUaBVN6ANoFkdAiH2yJKraNHV9lChoBmgJaA9DCMXKaOTzxExAlIaUUpRoFU3oA2gWR0CIfr96Tnq3dX2UKGgGaAloD0MIz0nvG19DPECUhpRSlGgVS/NoFkdAiIaHqFAVwnV9lChoBmgJaA9DCKCkwAIYp2JAlIaUUpRoFU3oA2gWR0CIiHQFcIJJdX2UKGgGaAloD0MIflGC/kLcW0CUhpRSlGgVTegDaBZHQIiPc9yLhrF1fZQoaAZoCWgPQwhJ1XYTfFhiQJSGlFKUaBVN6ANoFkdAiJM73Gn4wnV9lChoBmgJaA9DCG8NbJVgK2RAlIaUUpRoFU3oA2gWR0CIlAW+oLofdX2UKGgGaAloD0MIEheARukaIUCUhpRSlGgVTQYBaBZHQIiUOevpyIZ1fZQoaAZoCWgPQwjEBaBRuhw1QJSGlFKUaBVLu2gWR0CImcQOnVG1dX2UKGgGaAloD0MImkNSCyUrKkCUhpRSlGgVTSIBaBZHQIibchX8wYd1fZQoaAZoCWgPQwiRtBt9zPRbQJSGlFKUaBVN6ANoFkdAiJ9ODjBEa3V9lChoBmgJaA9DCPRuLCgMMmNAlIaUUpRoFU3oA2gWR0CIovaqS5iFdX2UKGgGaAloD0MIE5uPa0PVRECUhpRSlGgVTegDaBZHQIis/DaXa8J1fZQoaAZoCWgPQwhDq5MzlIFhQJSGlFKUaBVN6ANoFkdAiK11JlJ6IHV9lChoBmgJaA9DCOxOd5540jjAlIaUUpRoFUvYaBZHQIixZuQ6p5x1fZQoaAZoCWgPQwhUxOkkWxkzQJSGlFKUaBVLx2gWR0CIs1kbPyCndX2UKGgGaAloD0MIjxg9t9D3Y0CUhpRSlGgVTegDaBZHQIiz6T0QK8d1fZQoaAZoCWgPQwhaLhud8y9EQJSGlFKUaBVLq2gWR0CIvrS3solVdX2UKGgGaAloD0MIbjMV4hEKYkCUhpRSlGgVTegDaBZHQIkK1zuF6Ax1fZQoaAZoCWgPQwgxtaUOck9pQJSGlFKUaBVN6ANoFkdAiR0rF4s3AHV9lChoBmgJaA9DCLKbGf1ouV9AlIaUUpRoFU3oA2gWR0CJI2jlgc94dX2UKGgGaAloD0MI7zhFR/LQZECUhpRSlGgVTegDaBZHQIkkcGzKLbZ1fZQoaAZoCWgPQwj67laWaH9iQJSGlFKUaBVN6ANoFkdAiS8i5/b0v3V9lChoBmgJaA9DCKH3xhAAQ2ZAlIaUUpRoFU3oA2gWR0CJN1fu1F6SdX2UKGgGaAloD0MI7QxTW2rqYkCUhpRSlGgVTegDaBZHQIk7iAz544Z1fZQoaAZoCWgPQwhYIHpSJk5TQJSGlFKUaBVN6ANoFkdAiTyVCojv/nV9lChoBmgJaA9DCNKm6h7Zl15AlIaUUpRoFU3oA2gWR0CJPNkDIRywdX2UKGgGaAloD0MIol9bP/3DP0CUhpRSlGgVS/JoFkdAiUFS5iExqXV9lChoBmgJaA9DCLjkuFM6YC1AlIaUUpRoFUv2aBZHQIlCmsgdOqN1fZQoaAZoCWgPQwirJLIPsoFdQJSGlFKUaBVN6ANoFkdAiUN1TBInSnV9lChoBmgJaA9DCKOSOgFNv2BAlIaUUpRoFU3oA2gWR0CJTxZRKpT/dX2UKGgGaAloD0MIQx8sY0OXBcCUhpRSlGgVS+JoFkdAiVoYrz5GjXV9lChoBmgJaA9DCGNEotCyTENAlIaUUpRoFUvuaBZHQIlcrXpW3jN1fZQoaAZoCWgPQwgcfcwHBGFYQJSGlFKUaBVN6ANoFkdAiV6yLZSNwXV9lChoBmgJaA9DCDXvOEVHEg1AlIaUUpRoFUvsaBZHQIlkeitaIN51fZQoaAZoCWgPQwg0Spf+JT5eQJSGlFKUaBVN6ANoFkdAiWVCay8jA3V9lChoBmgJaA9DCO3w12SN115AlIaUUpRoFU3oA2gWR0CJZ+sPJ7swdX2UKGgGaAloD0MIuECC4scQUECUhpRSlGgVTegDaBZHQIlovFWGRFJ1fZQoaAZoCWgPQwiaJmw/GU1kQJSGlFKUaBVN6ANoFkdAiXPpk5IYnHV9lChoBmgJaA9DCAH8U6pEWQBAlIaUUpRoFUv7aBZHQIl5skdFOO91fZQoaAZoCWgPQwiH/DODeEBiQJSGlFKUaBVN6ANoFkdAibBi/wiJO3V9lChoBmgJaA9DCLBx/bs+WVFAlIaUUpRoFUvXaBZHQImzLBuXNTt1fZQoaAZoCWgPQwiBIatbPe1gQJSGlFKUaBVN6ANoFkdAicFKioKlYXV9lChoBmgJaA9DCDVdT3RdsV9AlIaUUpRoFU3oA2gWR0CJ2r6GgzxgdX2UKGgGaAloD0MI+b1Nf/ZAY0CUhpRSlGgVTegDaBZHQInnVYZEUj91fZQoaAZoCWgPQwjdI5ur5rRfQJSGlFKUaBVN6ANoFkdAieuPv8ZUDXV9lChoBmgJaA9DCMGNlC2SQGBAlIaUUpRoFU3oA2gWR0CJ8bcynDR/dX2UKGgGaAloD0MIy9qmeFxzW0CUhpRSlGgVTegDaBZHQIn0JeRgZ0l1fZQoaAZoCWgPQwjoaiv2F7tgQJSGlFKUaBVN6ANoFkdAif3nn2ZiNXV9lChoBmgJaA9DCNl5G5sd1WNAlIaUUpRoFU3oA2gWR0CKBpj4pMHsdX2UKGgGaAloD0MIMVuyKkI7YkCUhpRSlGgVTegDaBZHQIoJnMpw0fp1fZQoaAZoCWgPQwja/wBr1SNmQJSGlFKUaBVN6ANoFkdAig3hBzFMqXV9lChoBmgJaA9DCB6pvvOLGVxAlIaUUpRoFU3oA2gWR0CKDoZfD1oQdX2UKGgGaAloD0MIKlPMQdAbWUCUhpRSlGgVTegDaBZHQIoQ7adtl7N1fZQoaAZoCWgPQwglBKvqZQBiQJSGlFKUaBVN6ANoFkdAihGT7l7tzHV9lChoBmgJaA9DCCUIV0AhvGNAlIaUUpRoFU3oA2gWR0CKJDbBXS0CdX2UKGgGaAloD0MIcy7FVWXfXECUhpRSlGgVTegDaBZHQIo0g0oBq9J1fZQoaAZoCWgPQwinzM03IvFgQJSGlFKUaBVN6ANoFkdAimxx82JizHV9lChoBmgJaA9DCBIxJZJooWBAlIaUUpRoFU3oA2gWR0CKe3tXPqs2dX2UKGgGaAloD0MIpPs5BXnmZECUhpRSlGgVTegDaBZHQIqOSKJl8PZ1fZQoaAZoCWgPQwidEaW9wWtiQJSGlFKUaBVN6ANoFkdAipgTZYgaFXV9lChoBmgJaA9DCMU9lj50PGBAlIaUUpRoFU3oA2gWR0CKnK6asp5NdX2UKGgGaAloD0MIRkCFI0iaYUCUhpRSlGgVTegDaBZHQIqjwPy08eV1fZQoaAZoCWgPQwjFBDV8Cy5gQJSGlFKUaBVN6ANoFkdAiqY1GCqZMXV9lChoBmgJaA9DCDgu46aGRmVAlIaUUpRoFU3oA2gWR0CKsual1r6+dX2UKGgGaAloD0MIzAuwj068Y0CUhpRSlGgVTegDaBZHQIq/7cO9WZJ1fZQoaAZoCWgPQwgIdvwXCMBiQJSGlFKUaBVN6ANoFkdAisTSQHRkVnV9lChoBmgJaA9DCCiZnNoZymZAlIaUUpRoFU3oA2gWR0CKy8nUDuBudX2UKGgGaAloD0MIpBthUREsY0CUhpRSlGgVTegDaBZHQIrMwRAbADd1fZQoaAZoCWgPQwgOETenEs9kQJSGlFKUaBVN6ANoFkdAitA7di2Dx3V9lChoBmgJaA9DCJ/KaU/JL2JAlIaUUpRoFU3oA2gWR0CK0UDRMN+cdX2UKGgGaAloD0MIhXe5iO/AR8CUhpRSlGgVS8JoFkdAiuZXhGYrrnV9lChoBmgJaA9DCC2ZY3nXq2NAlIaUUpRoFU3oA2gWR0CK5ptD2JzldX2UKGgGaAloD0MIuAa2SrBnY0CUhpRSlGgVTegDaBZHQIr24UBXCCV1fZQoaAZoCWgPQwivJk9ZTYVmQJSGlFKUaBVN6ANoFkdAivnom5UcXHV9lChoBmgJaA9DCGWO5V31nVFAlIaUUpRoFUusaBZHQIr8SpPykKx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a872e929f04d81a0e813bbfafbdcf595a36c8b518c5644561b331fcb3ff6aa7c
3
+ size 147398
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9cad296ee0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9cad296f70>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9cad29b040>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9cad29b0d0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f9cad29b160>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f9cad29b1f0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9cad29b280>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9cad29b310>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f9cad29b3a0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9cad29b430>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9cad29b4c0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9cad29b550>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f9cad290f30>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 507904,
47
+ "_total_timesteps": 500000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1677123460124395288,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANO9Uj6c3z28cBbCOZwypLdczqW91Q7nuAAAgD8AAIA/ZvzDPcOZMrr5jZa4/cVBNvzqgTrv7ak3AACAPwAAgD/NMlu9PUpVuZo2YLwRjeW4vwNvO0WSVTgAAIA/AACAPw3b5D32eFS6iiGluoNoCL2Powu7i9lOuwAAAAAAAAAAIE1Avo9/NrxaPac4HbiWNgxqoz2Cacy3AACAPwAAgD8AzIk7XTS+P4W0Yj0LmP+9FHamPYnztL0AAAAAAAAAAFPwKD7sVbk6Wx7Su2yCO7hUnR08ZWHpuAAAgD8AAIA/Zm5MPMOxMrp6BU+5bR0WtIDtZ7r7vG44AACAPwAAgD8tyII+bIaoPMesjbvpqoi5yIYvPnLgj7oAAIA/AACAP8Cunr0pyFS649nTu7fBkTWcBYQ54KwCtQAAgD8AAIA/U4sGPrBGnD9b+n0+T60Dv5RFHT5ppbM8AAAAAAAAAAAzKjg9XIM6umkIpLoRO7KzGDeTOjHIvjkAAIA/AACAP55mDj9w4Q2+0N/2tmoSDrOqUHW+0KwRtAAAgD8AAIA/ejIovnQzs7ymWS89inVtvqdeCz5A7WU/AACAPwAAgD9mtgS8XHcBunIY+7viLA82/rITOyaAhLUAAIA/AACAPzOjkDrsV7U/ZuLkPZ2PhD5ftqa6FmLPvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVbhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMImFDB4QXrYECUhpRSlIwBbJRN6AOMAXSUR0CHphfaYeDGdX2UKGgGaAloD0MIk6rtJvgKQ0CUhpRSlGgVS85oFkdAh6qRRl6JInV9lChoBmgJaA9DCFd2weCa4FhAlIaUUpRoFU3oA2gWR0CHvcLUCq6wdX2UKGgGaAloD0MIXkvIBz3XUUCUhpRSlGgVTegDaBZHQIe+EXrMTvl1fZQoaAZoCWgPQwibAS7IFhVhQJSGlFKUaBVN6ANoFkdAh8RVndweeXV9lChoBmgJaA9DCKpFRDF5RWFAlIaUUpRoFU3oA2gWR0CHxVwn6VMVdX2UKGgGaAloD0MID+1jBb+ZR0CUhpRSlGgVTegDaBZHQIfFrvy9VWF1fZQoaAZoCWgPQwjC+j+H+bNjQJSGlFKUaBVN6ANoFkdAh87SvTw2EXV9lChoBmgJaA9DCEvl7QinLSFAlIaUUpRoFUvNaBZHQIfVpHPNVzZ1fZQoaAZoCWgPQwjGpSpt8T5hQJSGlFKUaBVN6ANoFkdAh9k3hGYrrnV9lChoBmgJaA9DCHtntFVJVVFAlIaUUpRoFUu9aBZHQIfaDJW/8EV1fZQoaAZoCWgPQwjdI5ur5tNjQJSGlFKUaBVN6ANoFkdAh+voyj59E3V9lChoBmgJaA9DCI7onnUNKGJAlIaUUpRoFU3oA2gWR0CH8nmz0HyFdX2UKGgGaAloD0MI1xael4qkY0CUhpRSlGgVTegDaBZHQIgBz/S6UaB1fZQoaAZoCWgPQwjKi0zAL/dlQJSGlFKUaBVN6ANoFkdAiARrdWQwK3V9lChoBmgJaA9DCNpYiXlW8V9AlIaUUpRoFU3oA2gWR0CIBQ6TW5H3dX2UKGgGaAloD0MIF4GxvgGSYUCUhpRSlGgVTegDaBZHQIgMFJaq0dB1fZQoaAZoCWgPQwjRH5p58qdhQJSGlFKUaBVN6ANoFkdAiBiUEovzv3V9lChoBmgJaA9DCF37Anrh81VAlIaUUpRoFU3oA2gWR0CIVGmgrYoRdX2UKGgGaAloD0MIHVcju1K4Y0CUhpRSlGgVTegDaBZHQIhas3VCojx1fZQoaAZoCWgPQwhu/InKhtkzQJSGlFKUaBVLyWgWR0CIXaxbB42TdX2UKGgGaAloD0MIQSjv4+h6a0CUhpRSlGgVTfcBaBZHQIhy6X8fmtB1fZQoaAZoCWgPQwjEzalkAHdfQJSGlFKUaBVN6ANoFkdAiHWzeoDPnnV9lChoBmgJaA9DCMRfkzXqdTvAlIaUUpRoFUvPaBZHQIh76tDD0lJ1fZQoaAZoCWgPQwhbXOMz2YpeQJSGlFKUaBVN6ANoFkdAiH2yJKraNHV9lChoBmgJaA9DCMXKaOTzxExAlIaUUpRoFU3oA2gWR0CIfr96Tnq3dX2UKGgGaAloD0MIz0nvG19DPECUhpRSlGgVS/NoFkdAiIaHqFAVwnV9lChoBmgJaA9DCKCkwAIYp2JAlIaUUpRoFU3oA2gWR0CIiHQFcIJJdX2UKGgGaAloD0MIflGC/kLcW0CUhpRSlGgVTegDaBZHQIiPc9yLhrF1fZQoaAZoCWgPQwhJ1XYTfFhiQJSGlFKUaBVN6ANoFkdAiJM73Gn4wnV9lChoBmgJaA9DCG8NbJVgK2RAlIaUUpRoFU3oA2gWR0CIlAW+oLofdX2UKGgGaAloD0MIEheARukaIUCUhpRSlGgVTQYBaBZHQIiUOevpyIZ1fZQoaAZoCWgPQwjEBaBRuhw1QJSGlFKUaBVLu2gWR0CImcQOnVG1dX2UKGgGaAloD0MImkNSCyUrKkCUhpRSlGgVTSIBaBZHQIibchX8wYd1fZQoaAZoCWgPQwiRtBt9zPRbQJSGlFKUaBVN6ANoFkdAiJ9ODjBEa3V9lChoBmgJaA9DCPRuLCgMMmNAlIaUUpRoFU3oA2gWR0CIovaqS5iFdX2UKGgGaAloD0MIE5uPa0PVRECUhpRSlGgVTegDaBZHQIis/DaXa8J1fZQoaAZoCWgPQwhDq5MzlIFhQJSGlFKUaBVN6ANoFkdAiK11JlJ6IHV9lChoBmgJaA9DCOxOd5540jjAlIaUUpRoFUvYaBZHQIixZuQ6p5x1fZQoaAZoCWgPQwhUxOkkWxkzQJSGlFKUaBVLx2gWR0CIs1kbPyCndX2UKGgGaAloD0MIjxg9t9D3Y0CUhpRSlGgVTegDaBZHQIiz6T0QK8d1fZQoaAZoCWgPQwhaLhud8y9EQJSGlFKUaBVLq2gWR0CIvrS3solVdX2UKGgGaAloD0MIbjMV4hEKYkCUhpRSlGgVTegDaBZHQIkK1zuF6Ax1fZQoaAZoCWgPQwgxtaUOck9pQJSGlFKUaBVN6ANoFkdAiR0rF4s3AHV9lChoBmgJaA9DCLKbGf1ouV9AlIaUUpRoFU3oA2gWR0CJI2jlgc94dX2UKGgGaAloD0MI7zhFR/LQZECUhpRSlGgVTegDaBZHQIkkcGzKLbZ1fZQoaAZoCWgPQwj67laWaH9iQJSGlFKUaBVN6ANoFkdAiS8i5/b0v3V9lChoBmgJaA9DCKH3xhAAQ2ZAlIaUUpRoFU3oA2gWR0CJN1fu1F6SdX2UKGgGaAloD0MI7QxTW2rqYkCUhpRSlGgVTegDaBZHQIk7iAz544Z1fZQoaAZoCWgPQwhYIHpSJk5TQJSGlFKUaBVN6ANoFkdAiTyVCojv/nV9lChoBmgJaA9DCNKm6h7Zl15AlIaUUpRoFU3oA2gWR0CJPNkDIRywdX2UKGgGaAloD0MIol9bP/3DP0CUhpRSlGgVS/JoFkdAiUFS5iExqXV9lChoBmgJaA9DCLjkuFM6YC1AlIaUUpRoFUv2aBZHQIlCmsgdOqN1fZQoaAZoCWgPQwirJLIPsoFdQJSGlFKUaBVN6ANoFkdAiUN1TBInSnV9lChoBmgJaA9DCKOSOgFNv2BAlIaUUpRoFU3oA2gWR0CJTxZRKpT/dX2UKGgGaAloD0MIQx8sY0OXBcCUhpRSlGgVS+JoFkdAiVoYrz5GjXV9lChoBmgJaA9DCGNEotCyTENAlIaUUpRoFUvuaBZHQIlcrXpW3jN1fZQoaAZoCWgPQwgcfcwHBGFYQJSGlFKUaBVN6ANoFkdAiV6yLZSNwXV9lChoBmgJaA9DCDXvOEVHEg1AlIaUUpRoFUvsaBZHQIlkeitaIN51fZQoaAZoCWgPQwg0Spf+JT5eQJSGlFKUaBVN6ANoFkdAiWVCay8jA3V9lChoBmgJaA9DCO3w12SN115AlIaUUpRoFU3oA2gWR0CJZ+sPJ7swdX2UKGgGaAloD0MIuECC4scQUECUhpRSlGgVTegDaBZHQIlovFWGRFJ1fZQoaAZoCWgPQwiaJmw/GU1kQJSGlFKUaBVN6ANoFkdAiXPpk5IYnHV9lChoBmgJaA9DCAH8U6pEWQBAlIaUUpRoFUv7aBZHQIl5skdFOO91fZQoaAZoCWgPQwiH/DODeEBiQJSGlFKUaBVN6ANoFkdAibBi/wiJO3V9lChoBmgJaA9DCLBx/bs+WVFAlIaUUpRoFUvXaBZHQImzLBuXNTt1fZQoaAZoCWgPQwiBIatbPe1gQJSGlFKUaBVN6ANoFkdAicFKioKlYXV9lChoBmgJaA9DCDVdT3RdsV9AlIaUUpRoFU3oA2gWR0CJ2r6GgzxgdX2UKGgGaAloD0MI+b1Nf/ZAY0CUhpRSlGgVTegDaBZHQInnVYZEUj91fZQoaAZoCWgPQwjdI5ur5rRfQJSGlFKUaBVN6ANoFkdAieuPv8ZUDXV9lChoBmgJaA9DCMGNlC2SQGBAlIaUUpRoFU3oA2gWR0CJ8bcynDR/dX2UKGgGaAloD0MIy9qmeFxzW0CUhpRSlGgVTegDaBZHQIn0JeRgZ0l1fZQoaAZoCWgPQwjoaiv2F7tgQJSGlFKUaBVN6ANoFkdAif3nn2ZiNXV9lChoBmgJaA9DCNl5G5sd1WNAlIaUUpRoFU3oA2gWR0CKBpj4pMHsdX2UKGgGaAloD0MIMVuyKkI7YkCUhpRSlGgVTegDaBZHQIoJnMpw0fp1fZQoaAZoCWgPQwja/wBr1SNmQJSGlFKUaBVN6ANoFkdAig3hBzFMqXV9lChoBmgJaA9DCB6pvvOLGVxAlIaUUpRoFU3oA2gWR0CKDoZfD1oQdX2UKGgGaAloD0MIKlPMQdAbWUCUhpRSlGgVTegDaBZHQIoQ7adtl7N1fZQoaAZoCWgPQwglBKvqZQBiQJSGlFKUaBVN6ANoFkdAihGT7l7tzHV9lChoBmgJaA9DCCUIV0AhvGNAlIaUUpRoFU3oA2gWR0CKJDbBXS0CdX2UKGgGaAloD0MIcy7FVWXfXECUhpRSlGgVTegDaBZHQIo0g0oBq9J1fZQoaAZoCWgPQwinzM03IvFgQJSGlFKUaBVN6ANoFkdAimxx82JizHV9lChoBmgJaA9DCBIxJZJooWBAlIaUUpRoFU3oA2gWR0CKe3tXPqs2dX2UKGgGaAloD0MIpPs5BXnmZECUhpRSlGgVTegDaBZHQIqOSKJl8PZ1fZQoaAZoCWgPQwidEaW9wWtiQJSGlFKUaBVN6ANoFkdAipgTZYgaFXV9lChoBmgJaA9DCMU9lj50PGBAlIaUUpRoFU3oA2gWR0CKnK6asp5NdX2UKGgGaAloD0MIRkCFI0iaYUCUhpRSlGgVTegDaBZHQIqjwPy08eV1fZQoaAZoCWgPQwjFBDV8Cy5gQJSGlFKUaBVN6ANoFkdAiqY1GCqZMXV9lChoBmgJaA9DCDgu46aGRmVAlIaUUpRoFU3oA2gWR0CKsual1r6+dX2UKGgGaAloD0MIzAuwj068Y0CUhpRSlGgVTegDaBZHQIq/7cO9WZJ1fZQoaAZoCWgPQwgIdvwXCMBiQJSGlFKUaBVN6ANoFkdAisTSQHRkVnV9lChoBmgJaA9DCCiZnNoZymZAlIaUUpRoFU3oA2gWR0CKy8nUDuBudX2UKGgGaAloD0MIpBthUREsY0CUhpRSlGgVTegDaBZHQIrMwRAbADd1fZQoaAZoCWgPQwgOETenEs9kQJSGlFKUaBVN6ANoFkdAitA7di2Dx3V9lChoBmgJaA9DCJ/KaU/JL2JAlIaUUpRoFU3oA2gWR0CK0UDRMN+cdX2UKGgGaAloD0MIhXe5iO/AR8CUhpRSlGgVS8JoFkdAiuZXhGYrrnV9lChoBmgJaA9DCC2ZY3nXq2NAlIaUUpRoFU3oA2gWR0CK5ptD2JzldX2UKGgGaAloD0MIuAa2SrBnY0CUhpRSlGgVTegDaBZHQIr24UBXCCV1fZQoaAZoCWgPQwivJk9ZTYVmQJSGlFKUaBVN6ANoFkdAivnom5UcXHV9lChoBmgJaA9DCGWO5V31nVFAlIaUUpRoFUusaBZHQIr8SpPykKx1ZS4="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 124,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ea977935a8a009248b92e70be0c216c4341a2da638502f21ab01fe0ad1ded46b
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b5ed2c32955aacf04db118e0a6fa97e72088ed4a6daf9b77b02843c823215b5
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (228 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 247.8425532322605, "std_reward": 20.690278721027518, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-23T03:56:24.979339"}