--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder - lewtun/dog_food metrics: - accuracy base_model: microsoft/resnet-18 model-index: - name: resnet-18-finetuned-dogfood results: - task: type: image-classification name: Image Classification dataset: name: lewtun/dog_food type: lewtun/dog_food args: lewtun--dog_food metrics: - type: accuracy value: 0.896 name: Accuracy - task: type: image-classification name: Image Classification dataset: name: lewtun/dog_food type: lewtun/dog_food config: lewtun--dog_food split: test metrics: - type: accuracy value: 0.8466666666666667 name: Accuracy verified: true - type: precision value: 0.8850127293141284 name: Precision Macro verified: true - type: precision value: 0.8466666666666667 name: Precision Micro verified: true - type: precision value: 0.8939157698241645 name: Precision Weighted verified: true - type: recall value: 0.8555113273379528 name: Recall Macro verified: true - type: recall value: 0.8466666666666667 name: Recall Micro verified: true - type: recall value: 0.8466666666666667 name: Recall Weighted verified: true - type: f1 value: 0.8431399312051647 name: F1 Macro verified: true - type: f1 value: 0.8466666666666667 name: F1 Micro verified: true - type: f1 value: 0.8430272582865614 name: F1 Weighted verified: true - type: loss value: 0.3633290231227875 name: loss verified: true - type: matthews_correlation value: 0.7973101366252381 name: matthews_correlation verified: true --- # resnet-18-finetuned-dogfood This model is a fine-tuned version of [microsoft/resnet-18](https://huggingface.co/microsoft/resnet-18) on the lewtun/dog_food dataset. It achieves the following results on the evaluation set: - Loss: 0.2991 - Accuracy: 0.896 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.846 | 1.0 | 16 | 0.2662 | 0.9156 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1