FANformer-1B / train.py
dongyh's picture
Upload 15 files
55c82d2 verified
from __future__ import annotations
import cProfile
import functools
import gc
import logging
import math
import os
import random
import shutil
import time
from collections import deque
from contextlib import nullcontext
from dataclasses import dataclass, field
from itertools import islice
from pathlib import Path
from pstats import SortKey
from typing import Any, Callable, Deque, Dict, List, Optional, TextIO, Tuple, Union
import numpy as np
import torch
import torch.distributed as dist
import torch.nn.functional as F
import torch.utils
import torch.utils.hooks
import wandb
from packaging import version
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data import DataLoader
from .aliases import PathOrStr
from .checkpoint import Checkpointer, FullCheckpointer, build_sharded_checkpointer
from .config import (
CheckpointType,
DDPGradSyncMode,
DistributedStrategy,
SchedulerUnits,
ShardedCheckpointerType,
SpeedMonitorConfig,
TrainConfig,
)
from .data import IterableDataset
from .eval import Evaluator
from .exceptions import OLMoConfigurationError
from .model import OLMo
from .optim import Optimizer, Scheduler
from .torch_util import (
barrier,
gc_cuda,
get_fs_local_rank,
get_global_rank,
get_world_size,
move_to_device,
peak_gpu_memory,
synchronize_flag,
synchronize_value,
)
from .util import upload
__all__ = ["SpeedMonitor", "LRMonitor", "Trainer"]
log = logging.getLogger(__name__)
@dataclass
class SpeedMonitor:
cfg: SpeedMonitorConfig
start_times: Deque[float] = field(default_factory=lambda: deque([]))
global_total_tokens: int = 0
total_training_Gflops: float = 0
device_interval_tokens: Deque[int] = field(default_factory=lambda: deque([]))
def batch_start(
self,
global_total_tokens: int,
device_batch_num_tokens: int,
num_fwd_flops: int,
num_bck_flops: int,
record: bool = True,
) -> None:
self.global_total_tokens = global_total_tokens
# num_fwd_flops and num_bck_flops from the OLMo model computes flops per token
# converting to GFLOPs here prevents numerical issues while logging
self.total_training_Gflops = (num_fwd_flops + num_bck_flops) * global_total_tokens / 1e9
if record:
if len(self.start_times) >= self.cfg.window_size:
self.start_times.popleft()
self.device_interval_tokens.popleft()
self.start_times.append(time.monotonic())
self.device_interval_tokens.append(device_batch_num_tokens)
def reset(self) -> None:
self.start_times.clear()
self.device_interval_tokens.clear()
def check(self) -> Dict[str, float]:
metrics: Dict[str, float] = {"throughput/total_tokens": self.global_total_tokens}
# plot flops related metrics
metrics["throughput/total_training_Gflops"] = self.total_training_Gflops
metrics["throughput/total_training_log_Gflops"] = math.log(self.total_training_Gflops)
if self.start_times:
interval_seconds = time.monotonic() - self.start_times[0]
interval_batches = len(self.start_times)
interval_tokens = sum(self.device_interval_tokens)
metrics["throughput/device/tokens_per_second"] = interval_tokens / interval_seconds
metrics["throughput/device/batches_per_second"] = interval_batches / interval_seconds
return metrics
@dataclass
class LRMonitor:
optim: torch.optim.Optimizer
def check(self) -> Dict[str, float]:
lrs = [group["lr"] for group in self.optim.param_groups]
return {f"optim/learning_rate_group{idx}": lr for idx, lr in enumerate(lrs)}
def cross_entropy_loss(
logits,
labels,
ignore_index: int = -100,
reduction: str = "mean",
compute_z_loss: bool = False,
z_loss_multiplier: float = 1e-4,
):
loss = F.cross_entropy(logits, labels, ignore_index=ignore_index, reduction=reduction)
if not compute_z_loss:
return loss, None
z_squared = logits.logsumexp(-1).pow(2)
if reduction == "mean":
z_squared = (z_squared * (labels != ignore_index)).mean()
elif reduction == "sum":
z_squared = (z_squared * (labels != ignore_index)).sum()
z_loss = z_loss_multiplier * z_squared
return loss, z_loss
fused_loss_fn: Optional[Callable]
try:
import flash_attn
from flash_attn.ops.triton.cross_entropy import (
cross_entropy_loss as flash_cross_entropy_loss, # type: ignore
)
def fused_loss_fn(
logits,
labels,
ignore_index: int = -100,
reduction: str = "mean",
compute_z_loss: bool = False,
z_loss_multiplier: float = 1e-4,
):
# The `ignored_index` parameter of `cross_entropy_loss` was changed to `ignore_index` in v2.5.8 with commit https://github.com/Dao-AILab/flash-attention/commit/ec6d22143b5d375e253b2ebfc563b26a43f43684
ce_loss_use_ignore_index_param = version.parse(flash_attn.__version__) >= version.parse("2.5.8")
if ce_loss_use_ignore_index_param:
ignore_index_kwarg = {"ignore_index": ignore_index}
else:
ignore_index_kwarg = {"ignored_index": ignore_index}
loss, z_loss = flash_cross_entropy_loss(
logits,
labels,
label_smoothing=0.0,
logit_scale=1.0,
lse_square_scale=z_loss_multiplier,
inplace_backward=False,
process_group=None,
**ignore_index_kwarg,
)
mask = labels != ignore_index
if reduction == "mean":
loss = loss.sum() / mask.sum()
elif reduction == "sum":
loss = loss.sum()
else:
loss = loss
if not compute_z_loss:
return loss, None
if reduction == "mean":
z_loss = z_loss.sum() / mask.sum()
elif reduction == "sum":
z_loss = z_loss.sum()
else:
z_loss = z_loss
return loss, z_loss
except ImportError:
fused_loss_fn = None
@dataclass
class Trainer:
cfg: TrainConfig
model: OLMo
dist_model: Union[DDP, FSDP]
optim: Optimizer
scheduler: Scheduler
train_loader: DataLoader
device: torch.device
evaluators: List[Evaluator]
epoch: Optional[int] = None
global_step: int = 0
global_train_examples_seen_this_epoch: int = 0
"""Tracks the global number of training examples seen in the current epoch for the purpose of restoring
the data loader position on restarts."""
global_train_tokens_seen: int = 0
"""Tracks the global total number of tokens trained on."""
checkpoints: List[Path] = field(default_factory=list)
unsharded_checkpoints: List[Path] = field(default_factory=list)
ephemeral_checkpoints: List[Path] = field(default_factory=list)
min_train_loss: float = float("inf")
cur_train_loss: float = float("inf")
indices_file: Optional[TextIO] = None
_start_time: float = 0.0
_gc_init_state: bool = True
loss_fn: Callable[..., torch.Tensor] = field(default_factory=lambda: cross_entropy_loss) # type: ignore
last_sharded_checkpoint_step: Optional[int] = None
last_unsharded_checkpoint_step: Optional[int] = None
def __post_init__(self):
if self.cfg.fused_loss:
if fused_loss_fn is not None:
self.loss_fn = fused_loss_fn
else:
raise NameError("`fused_loss_fn` is not defined. Please ensure that `flash_attn` is installed.")
@property
def dataset(self) -> IterableDataset:
assert isinstance(self.train_loader.dataset, IterableDataset)
return self.train_loader.dataset
@property
def tokens_per_batch(self) -> int:
return self.cfg.global_train_batch_size * self.cfg.model.max_sequence_length
@property
def batches_per_epoch(self) -> int:
return self.dataset.total_size // self.cfg.global_train_batch_size
@property
def max_epochs(self) -> int:
return math.ceil(self.max_steps / self.batches_per_epoch)
@property
def max_steps(self) -> int:
if isinstance(self.cfg.max_duration, int):
return self.cfg.max_duration
elif isinstance(self.cfg.max_duration, str):
if self.cfg.max_duration.endswith("T"):
# convert to float *first* to handle scientific notation
max_tokens = int(float(self.cfg.max_duration[:-1].strip()))
tokens_remaining = max(max_tokens - self.global_train_tokens_seen, 0)
steps_remaining = math.ceil(tokens_remaining / self.tokens_per_batch)
return self.global_step + steps_remaining
elif self.cfg.max_duration.endswith("ep"):
max_epochs = int(self.cfg.max_duration[:-2].strip())
return max_epochs * self.batches_per_epoch
else:
# convert to float *first* to handle scientific notation
return int(float(self.cfg.max_duration))
else:
raise TypeError(f"expected int or str for 'max_duration', found {type(self.cfg.max_duration)}")
@property
def max_tokens(self) -> int:
if isinstance(self.cfg.max_duration, int):
return (
self.global_train_tokens_seen
+ max(self.cfg.max_duration - self.global_step, 0) * self.tokens_per_batch
)
elif isinstance(self.cfg.max_duration, str):
if self.cfg.max_duration.endswith("T"):
# convert to float *first* to handle scientific notation
return int(float(self.cfg.max_duration[:-1].strip()))
elif self.cfg.max_duration.endswith("ep"):
max_epochs = int(self.cfg.max_duration[:-2].strip())
return max_epochs * self.batches_per_epoch * self.tokens_per_batch
else:
# convert to float *first* to handle scientific notation
return (
self.global_train_tokens_seen
+ max(int(float(self.cfg.max_duration)) - self.global_step, 0) * self.tokens_per_batch
)
else:
raise TypeError(f"expected int or str for 'max_duration', found {type(self.cfg.max_duration)}")
@property
def scheduler_current(self) -> int:
if self.cfg.scheduler.units == SchedulerUnits.steps:
return self.global_step
elif self.cfg.scheduler.units == SchedulerUnits.tokens:
return self.global_train_tokens_seen
else:
raise NotImplementedError(self.cfg.scheduler.units)
@property
def scheduler_max(self) -> int:
if self.cfg.scheduler.units == SchedulerUnits.steps:
return self.max_steps
elif self.cfg.scheduler.units == SchedulerUnits.tokens:
return self.max_tokens
else:
raise NotImplementedError(self.cfg.scheduler.units)
def trainer_state_dict(self) -> Dict[str, Any]:
return {
"epoch": self.epoch or 0,
"global_step": self.global_step,
"global_train_examples_seen_this_epoch": self.global_train_examples_seen_this_epoch,
"global_train_tokens_seen": self.global_train_tokens_seen,
"world_size": get_world_size(),
"checkpoints": self.checkpoints,
"unsharded_checkpoints": self.unsharded_checkpoints,
"ephemeral_checkpoints": self.ephemeral_checkpoints,
"rng": {
"python": random.getstate(),
"numpy": np.random.get_state(),
"torch": torch.random.get_rng_state(),
"cuda": torch.cuda.get_rng_state(),
},
}
def load_trainer_state_dict(self, state_dict: Dict[str, Any]) -> None:
# Checkpoint paths.
self.checkpoints = [
path
for path in state_dict["checkpoints"]
if path.is_dir() and path.resolve().parent == Path(self.cfg.save_folder).resolve()
]
self.unsharded_checkpoints = [
path
for path in state_dict["unsharded_checkpoints"]
if path.is_dir() and path.resolve().parent == Path(self.cfg.save_folder).resolve()
]
self.ephemeral_checkpoints = [
path
for path in state_dict.get("ephemeral_checkpoints", [])
if path.is_dir() and path.resolve().parent == Path(self.cfg.save_folder).resolve()
]
# Dataset / dataloader position.
checkpoint_epoch = state_dict.get("epoch") or 0
self.global_step = state_dict["global_step"]
self.global_train_examples_seen_this_epoch = state_dict.get(
"global_train_examples_seen_this_epoch",
state_dict.get( # for backwards compatibility
"global_train_examples_seen",
state_dict.get("global_data_step", self.global_step) * self.cfg.global_train_batch_size,
),
)
self.global_train_tokens_seen = state_dict.get(
"global_train_tokens_seen",
state_dict.get("global_data_step", self.global_step) # for backwards compatibility
* self.cfg.global_train_batch_size
* self.cfg.model.max_sequence_length,
)
if not self.cfg.restore_dataloader:
self.epoch = 0
self.global_step = 0
self.global_train_tokens_seen = 0
self.global_train_examples_seen_this_epoch = 0
elif self.epoch is None:
self.epoch = checkpoint_epoch
elif checkpoint_epoch != self.epoch:
log.info(f"Starting new epoch (epoch = {self.epoch})")
self.global_train_examples_seen_this_epoch = 0
assert self.epoch is not None
# Reshuffle dataset if needed.
if self.dataset.epoch != self.epoch:
log.info(f"Reshuffling data loader for epoch {self.epoch}...")
self.dataset.reshuffle(self.epoch)
if self.cfg.fast_forward_batches:
log.info(f"Fast-forwarding data loader by {self.cfg.fast_forward_batches:,d} steps")
# Technically we don't "see" these batches that we fast-forward through, but we use
# this variable to update the position of the dataset so we need to include them here.
self.global_train_examples_seen_this_epoch += (
self.cfg.fast_forward_batches * self.cfg.global_train_batch_size
)
# NOTE: on the other hand we don't add anything to 'self.global_train_tokens_seen' here because
# that variable is meant to track the actual number of tokens trained on.
if self.global_train_examples_seen_this_epoch > 0:
assert isinstance(self.dataset, IterableDataset)
log.info(f"Data loader will start at instance index {self.global_train_examples_seen_this_epoch:,d}")
self.dataset.start_index = self.global_train_examples_seen_this_epoch
# Reset learning rate and weight decay to the values from the config, not the checkpoint.
log.info("Resetting learning rate...")
new_learning_rate = self.scheduler.get_lr(
self.cfg.optimizer.learning_rate, self.scheduler_current, self.scheduler_max
)
for group in self.optim.param_groups:
group["lr"] = new_learning_rate
group["initial_lr"] = self.cfg.optimizer.learning_rate
if "weight_decay" in group and group["weight_decay"] > 0.0:
group["weight_decay"] = self.cfg.optimizer.weight_decay
# RNG states.
if "rng" in state_dict and state_dict.get("world_size", get_world_size()) == get_world_size():
log.info("Restoring RNG states...")
rng_state = state_dict["rng"]
self.restore_rng_state(rng_state)
else:
log.warning(
"Trainer will not restore RNG states since the RNG states in the checkpoint are missing or invalid. "
"This typically happens when restoring from an unsharded checkpoint or a checkpoint that was saved "
"with a different world size. If that's the case you can safely ignore this warning."
)
def restore_rng_state(self, rng_state: Dict[str, Any]) -> None:
random.setstate(rng_state["python"])
np.random.set_state(rng_state["numpy"])
torch.set_rng_state(rng_state["torch"])
torch.cuda.set_rng_state(rng_state["cuda"])
def _save_checkpoint(
self, checkpointer: Checkpointer, checkpoint_type: CheckpointType
) -> Tuple[PathOrStr, Optional[PathOrStr]]:
if checkpoint_type == CheckpointType.sharded:
suffix = ""
current_checkpoints = self.checkpoints
link_latest = get_fs_local_rank() == 0
num_checkpoints_to_keep = self.cfg.save_num_checkpoints_to_keep
elif checkpoint_type == CheckpointType.unsharded:
suffix = "-unsharded"
current_checkpoints = self.unsharded_checkpoints
link_latest = get_global_rank() == 0
num_checkpoints_to_keep = self.cfg.save_num_unsharded_checkpoints_to_keep
elif checkpoint_type == CheckpointType.sharded_ephemeral:
suffix = ""
current_checkpoints = self.ephemeral_checkpoints
link_latest = get_fs_local_rank() == 0
num_checkpoints_to_keep = 1
else:
raise NotImplementedError(checkpoint_type)
# Zero-gradients to avoid gathering them.
self.optim.zero_grad(set_to_none=True)
# Flush data indices file.
# TODO: upload the indices files?
if self.indices_file is not None:
self.indices_file.flush()
checkpoint_dir = Path(self.cfg.save_folder) / f"step{self.global_step}{suffix}"
remote_checkpoint_dir: Optional[str] = None
if self.cfg.remote_save_folder is not None:
remote_checkpoint_dir = f"{self.cfg.remote_save_folder.rstrip('/')}/{checkpoint_dir.name}"
current_checkpoints.append(checkpoint_dir)
# Save the checkpoint.
try:
checkpointer.save_checkpoint(
checkpoint_dir,
self.dist_model,
self.optim,
self.trainer_state_dict(),
upload_to=remote_checkpoint_dir,
)
except FileExistsError:
raise OLMoConfigurationError(
f"Checkpoint for step {self.global_step} already exists, use --save_overwrite to overwrite it"
)
if link_latest:
# Link to 'latest'.
latest_path = Path(self.cfg.save_folder) / f"latest{suffix}"
latest_path.unlink(missing_ok=True)
try:
latest_path.symlink_to(checkpoint_dir.name, target_is_directory=True)
except FileExistsError:
# Same as above, caught when another (file-system) local rank 0 has already made the 'latest' symlink.
# This can happen when nodes are saving to a common NFS drive but otherwise have distinct
# file-systems.
if latest_path.resolve().name != checkpoint_dir.name:
raise
# Remove old checkpoints.
# For DDP, checkpoint_type being passed to remove_checkpoint is always `unsharded`.
if num_checkpoints_to_keep > 0:
while len(current_checkpoints) > num_checkpoints_to_keep:
self.remove_checkpoint(0, checkpoint_type)
barrier()
if remote_checkpoint_dir is not None:
return remote_checkpoint_dir, checkpoint_dir
else:
return checkpoint_dir, None
def save_sharded_checkpoint(self) -> Tuple[PathOrStr, Optional[PathOrStr]]:
checkpointer = build_sharded_checkpointer(self.cfg)
result = self._save_checkpoint(checkpointer, CheckpointType.sharded)
self.last_sharded_checkpoint_step = self.global_step
return result
def save_ephemeral_checkpoint(self) -> Tuple[PathOrStr, Optional[PathOrStr]]:
checkpointer = build_sharded_checkpointer(self.cfg)
result = self._save_checkpoint(checkpointer, CheckpointType.sharded_ephemeral)
self.last_sharded_checkpoint_step = self.global_step
return result
def _remove_sharded_checkpoint(self, idx: int, checkpoints: List[Path]):
oldest_checkpoint = checkpoints.pop(idx)
barrier()
if get_fs_local_rank() == 0 and oldest_checkpoint.is_dir():
shutil.rmtree(oldest_checkpoint, ignore_errors=True)
latest_path = Path(self.cfg.save_folder) / "latest"
if latest_path.resolve() == oldest_checkpoint.resolve():
latest_path.unlink()
barrier()
def remove_sharded_checkpoint(self, idx: int = 0):
self._remove_sharded_checkpoint(idx, self.checkpoints)
def remove_ephemeral_checkpoint(self, idx: int = 0):
self._remove_sharded_checkpoint(idx, self.ephemeral_checkpoints)
def restore_sharded_checkpoint(
self,
load_path: PathOrStr,
local_cache: Optional[PathOrStr] = None,
*,
load_optimizer_state: bool = True,
load_trainer_state: bool = True,
sharded_checkpointer: Optional[ShardedCheckpointerType] = None,
):
# Zero-gradients to avoid gathering them.
self.optim.zero_grad(set_to_none=True)
checkpointer = build_sharded_checkpointer(self.cfg, name=sharded_checkpointer)
trainer_state = checkpointer.restore_checkpoint(
load_path,
self.dist_model,
self.optim,
local_cache=local_cache,
load_optimizer_state=load_optimizer_state,
)
if load_trainer_state:
self.load_trainer_state_dict(trainer_state)
barrier()
def save_unsharded_checkpoint(self) -> Tuple[PathOrStr, Optional[PathOrStr]]:
checkpointer = FullCheckpointer(self.cfg)
result = self._save_checkpoint(checkpointer, CheckpointType.unsharded)
self.last_unsharded_checkpoint_step = self.global_step
return result
def remove_unsharded_checkpoint(self, idx: int = 0):
barrier()
oldest_checkpoint = self.unsharded_checkpoints.pop(idx)
if get_global_rank() == 0 and oldest_checkpoint.is_dir():
shutil.rmtree(oldest_checkpoint, ignore_errors=True)
latest_path = Path(self.cfg.save_folder) / "latest-unsharded"
if latest_path.resolve() == oldest_checkpoint.resolve():
latest_path.unlink()
barrier()
def restore_unsharded_checkpoint(
self,
load_path: PathOrStr,
local_cache: Optional[PathOrStr] = None,
*,
load_optimizer_state: bool = True,
load_trainer_state: bool = True,
):
# Zero-gradients to avoid gathering them.
self.optim.zero_grad(set_to_none=True)
checkpointer = FullCheckpointer(self.cfg)
trainer_state = checkpointer.restore_checkpoint(
load_path,
self.dist_model,
self.optim,
local_cache=local_cache,
load_optimizer_state=load_optimizer_state,
)
if load_trainer_state:
self.load_trainer_state_dict(trainer_state)
barrier()
def save_checkpoint(
self, checkpoint_type: CheckpointType = CheckpointType.sharded
) -> Tuple[PathOrStr, Optional[PathOrStr]]:
result: Tuple[PathOrStr, Optional[PathOrStr]]
if checkpoint_type == CheckpointType.sharded:
result = self.save_sharded_checkpoint()
elif checkpoint_type == CheckpointType.unsharded:
result = self.save_unsharded_checkpoint()
elif checkpoint_type == CheckpointType.sharded_ephemeral:
result = self.save_ephemeral_checkpoint()
else:
raise NotImplementedError(checkpoint_type)
gc_cuda()
return result
def restore_checkpoint(
self,
load_path: PathOrStr,
*,
checkpoint_type: Optional[CheckpointType] = None,
local_cache: Optional[PathOrStr] = None,
load_optimizer_state: bool = True,
load_trainer_state: bool = True,
sharded_checkpointer: Optional[ShardedCheckpointerType] = None,
):
if checkpoint_type == CheckpointType.unsharded or (
checkpoint_type is None and str(load_path).rstrip("/").endswith("-unsharded")
):
self.restore_unsharded_checkpoint(
load_path,
local_cache=local_cache,
load_optimizer_state=load_optimizer_state,
load_trainer_state=load_trainer_state,
)
elif checkpoint_type == CheckpointType.sharded or checkpoint_type is None:
self.restore_sharded_checkpoint(
load_path,
local_cache=local_cache,
load_optimizer_state=load_optimizer_state,
load_trainer_state=load_trainer_state,
sharded_checkpointer=sharded_checkpointer,
)
elif checkpoint_type is not None:
raise NotImplementedError(checkpoint_type)
gc_cuda()
def remove_checkpoint(self, idx: int = 0, checkpoint_type: CheckpointType = CheckpointType.sharded):
if checkpoint_type == CheckpointType.sharded:
self.remove_sharded_checkpoint(idx=idx)
elif checkpoint_type == CheckpointType.unsharded:
self.remove_unsharded_checkpoint(idx=idx)
elif checkpoint_type == CheckpointType.sharded_ephemeral:
self.remove_ephemeral_checkpoint(idx=idx)
else:
raise NotImplementedError(checkpoint_type)
def _setup_module_output_save_hooks(self, micro_batch_idx: int) -> List[torch.utils.hooks.RemovableHandle]:
if (
self.cfg.module_outputs_save_steps is None
or self.global_step not in self.cfg.module_outputs_save_steps
):
return []
if micro_batch_idx != 0 or get_global_rank() != 0:
# Hook is currently only used on the first microbatch of rank 0
return []
trace_save_folder = Path(self.cfg.save_folder) / f"traces/step{self.global_step}"
if trace_save_folder.exists():
if self.cfg.save_overwrite:
shutil.rmtree(trace_save_folder)
else:
raise OLMoConfigurationError(
f"Attempting to overwrite traces at step {self.global_step} without --save_overwrite"
)
trace_save_folder.mkdir(parents=True)
def trace_outputs_hook(
module_name: str, _: torch.nn.Module, args: Tuple[torch.Tensor, ...], output: torch.Tensor
) -> None:
if len(args) == 0:
log.info("No input args for module %s, output %s", module_name, output)
module_input = args[0] if len(args) > 0 else torch.tensor(())
trace_save_folder = Path(self.cfg.save_folder) / f"traces/step{self.global_step}"
trace_save_folder.mkdir(parents=True, exist_ok=True)
module_occurence_num = 0
while (
module_input_filepath := trace_save_folder / f"{module_name}_{module_occurence_num}_input.pt"
).exists():
module_occurence_num += 1
torch.save(module_input, module_input_filepath)
module_output_filepath = trace_save_folder / f"{module_name}_{module_occurence_num}_output.pt"
torch.save(output, module_output_filepath)
output_hooks = []
for module_name, module in self.model.named_modules(prefix="model"):
output_hooks.append(module.register_forward_hook(functools.partial(trace_outputs_hook, module_name)))
return output_hooks
def get_labels(self, batch: Dict[str, Any]) -> torch.Tensor:
# Labels are just input IDs shifted to the left (first item is ignored).
labels, label_mask, attention_mask, instance_mask = (
batch["input_ids"].clone(),
batch.get("label_mask"),
batch.get("attention_mask"),
batch.get("instance_mask"),
)
if label_mask is not None:
labels.masked_fill_(~label_mask, -100)
if attention_mask is not None:
labels.masked_fill_(attention_mask == 0.0, -100)
if instance_mask is not None:
labels.masked_fill_(~instance_mask.unsqueeze(-1), value=-100)
return labels[..., 1:].contiguous()
def model_forward(
self, batch: Dict[str, Any], loss_reduction: str = "mean", compute_z_loss: bool = False
) -> Tuple[torch.Tensor, Optional[torch.Tensor], torch.Tensor]:
# shape: (batch_size, seq_len, vocab_size)
logits = self.dist_model(
input_ids=batch["input_ids"],
attention_mask=batch.get("attention_mask"),
attention_bias=batch.get("attention_bias"),
doc_lens=batch.get("doc_lens"),
max_doc_lens=batch.get("max_doc_lens"),
).logits
logits_for_loss = logits[..., :-1, :].contiguous()
# shape: (batch_size * seq_len, vocab_size)
logits_for_loss = logits_for_loss.view(-1, logits_for_loss.size(-1))
# shape: (batch_size, seq_len)
labels = self.get_labels(batch)
# shape: (batch_size * seq_len,)
labels = labels.view(-1)
ce_loss, z_loss = self.loss_fn(
logits_for_loss, labels, ignore_index=-100, reduction=loss_reduction, compute_z_loss=compute_z_loss
)
if loss_reduction == "none":
# Reshape (batch_size * seq_len,) -> (batch_size, seq_len)
ce_loss = ce_loss.view(batch["input_ids"].shape[0], -1)
if z_loss is not None:
z_loss = z_loss.view(batch["input_ids"].shape[0], -1)
return ce_loss, z_loss, logits
def train_micro_batch(
self, micro_batch: Dict[str, Any], batch_size_in_tokens: int
) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
ce_loss, z_loss, logits = self.model_forward(
micro_batch, compute_z_loss=self.cfg.softmax_auxiliary_loss, loss_reduction="sum"
)
ce_loss = ce_loss / batch_size_in_tokens
# In case this helps with memory utilization.
del micro_batch
# Get loss to optimize for.
if self.cfg.softmax_auxiliary_loss:
assert z_loss is not None
z_loss = z_loss / batch_size_in_tokens
loss = ce_loss + z_loss
else:
loss = ce_loss
del logits
return loss, ce_loss, z_loss
def train_batch(self, batch: Dict[str, Any]) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
# Split into micro-batches.
micro_batches = self.split_batch(batch)
batch_size_in_tokens = batch["input_ids"].numel()
# In case this helps with memory utilization.
del batch
ce_batch_loss = torch.tensor(0.0, device=self.device)
z_batch_loss = None if not self.cfg.softmax_auxiliary_loss else torch.tensor(0.0, device=self.device)
num_micro_batches = len(micro_batches)
for micro_batch_idx, micro_batch in enumerate(micro_batches):
# setup sync context for DDP for all micro-batches except the last
grad_sync_context = nullcontext
if (
self.cfg.distributed_strategy == DistributedStrategy.ddp
and self.cfg.ddp is not None
and self.cfg.ddp.grad_sync_mode == DDPGradSyncMode.batch
):
if micro_batch_idx != num_micro_batches - 1:
grad_sync_context = self.dist_model.no_sync
# Register output hooks
output_hooks: List[torch.utils.hooks.RemovableHandle] = []
output_hooks += self._setup_module_output_save_hooks(micro_batch_idx)
with grad_sync_context():
with torch.autocast("cuda", enabled=True, dtype=self.cfg.autocast_precision):
# Run forward pass.
loss, ce_loss, z_loss = self.train_micro_batch(micro_batch, batch_size_in_tokens)
# Update overall CE batch loss.
ce_batch_loss += ce_loss.detach()
# Update overall Z batch loss.
if z_loss is not None:
assert z_batch_loss is not None
z_batch_loss += z_loss.detach()
# Run backward pass.
loss.backward()
# Remove output hooks
for hook in output_hooks:
hook.remove()
return ce_batch_loss, z_batch_loss
def train_step(self, batch: Dict[str, Any], reduce_global_loss: bool = True) -> Dict[str, float]:
metrics: Dict[str, float] = {}
# Write data-indices to file.
if self.indices_file is not None and "index" in batch:
indices = "\t".join(str(int(i)) for i in batch["index"])
self.indices_file.write(f"{self.global_step}\t{indices}\n")
# Record how many instances are going to be skipped (masked out).
if (instance_mask := batch.get("instance_mask")) is not None:
metrics["train/masked_instances_local_rank"] = (~instance_mask).sum().item()
# Zero-gradients.
self.optim.zero_grad(set_to_none=True)
# Move tensors to the right device.
batch = move_to_device(batch, self.device)
# Run forward-backward pass.
ce_batch_loss, z_batch_loss = self.train_batch(batch)
# Collect loss, potentially reducing over all ranks.
if reduce_global_loss:
dist.reduce(ce_batch_loss, 0)
ce_batch_loss.div_(get_world_size())
if z_batch_loss is not None:
dist.reduce(z_batch_loss, 0)
z_batch_loss.div_(get_world_size())
# Clip gradient norms and collect param/gradient/optim metrics.
should_log_optim_metrics_this_step = self.should_log_optim_metrics_this_step()
optim_metrics = self.optim.clip_grads_and_collect_metrics(
self.global_step,
collect_param_metrics=should_log_optim_metrics_this_step,
# passing this process group here ensures metrics are reduced correctly when we're using
# HYBRID sharding.
process_group=self.dist_model.process_group,
)
# Adjust the learning rate.
for group in self.optim.param_groups:
# TODO (epwalsh): if we want to enable different LRs or gradient clipping settings per group
# we should pass `group["initial_lr"]` or `group["initial_max_grad_norm"]` here instead of
# the corresponding values from `self.cfg`.
group["lr"] = self.scheduler.get_lr(
self.cfg.optimizer.learning_rate, self.scheduler_current, self.scheduler_max
)
group["max_grad_norm"] = self.scheduler.get_max_grad_norm(
self.cfg.max_grad_norm, self.scheduler_current, self.scheduler_max
)
group["max_grad_norm_ratio"] = self.scheduler.get_max_grad_norm(
self.cfg.max_grad_norm_ratio, self.scheduler_current, self.scheduler_max
)
# Optimizer step.
self.optim.step()
# Collect metrics and check for NaN loss.
# NOTE: this involves a bunch of host-device syncs so we wait until the last moment to do this.
if torch.isnan(ce_batch_loss):
raise ValueError("nan loss encountered")
if z_batch_loss is not None and torch.isnan(z_batch_loss):
raise ValueError("nan loss encountered")
for key, value in optim_metrics.items():
metrics[f"optim/{key}"] = value.item()
self.cur_train_loss = ce_batch_loss.item()
self.min_train_loss = min(self.min_train_loss, self.cur_train_loss)
metrics["train/CrossEntropyLoss"] = self.cur_train_loss
metrics["train/Perplexity"] = math.exp(self.cur_train_loss)
if z_batch_loss is not None:
metrics["train/ZLoss"] = z_batch_loss.item()
# Maybe collect post-step optimizer-specific metrics.
if should_log_optim_metrics_this_step:
optim_metrics = self.optim.get_post_step_metrics(
self.dist_model, process_group=self.dist_model.process_group
)
for key, value in optim_metrics.items():
metrics[f"optim/{key}"] = value.item()
return metrics
def eval_batch(self, batch: Dict[str, Any]) -> Tuple[torch.Tensor, torch.Tensor]:
with torch.autocast("cuda", enabled=True, dtype=self.cfg.autocast_precision):
ce_loss, _, logits = self.model_forward(batch, loss_reduction="none")
return ce_loss.mean(dim=-1), logits
def eval_step(self, batch: Dict[str, Any], evaluator: Evaluator) -> None:
# Move tensors to the right device.
batch = move_to_device(batch, self.device)
# Run forward pass.
with torch.no_grad(): # NOTE: 'torch.inference_mode()' doesn't work with 'torch.compile()'.
ce_loss, logits = self.eval_batch(batch)
# Update metrics.
evaluator.update_metrics(
batch, ce_loss, logits
) # batch includes all keys that the downstream evaluation needs
barrier()
def split_batch(self, batch: Dict[str, Any]) -> List[Dict[str, Any]]:
microbatch_size = self.cfg.device_train_microbatch_size
batch_size = batch["input_ids"].shape[0]
if batch_size <= microbatch_size:
return [batch]
else:
micro_batches = {}
for key, value in batch.items():
if isinstance(value, torch.Tensor):
micro_batches[key] = value.split(microbatch_size, dim=0)
elif isinstance(value, list):
micro_batches[key] = [
value[microbatch_size * i : microbatch_size * i + microbatch_size]
for i in range(math.ceil(batch_size / microbatch_size))
]
else:
raise ValueError(f"unexpected item in batch: '{key}={value}'")
return [
{key: value[i] for key, value in micro_batches.items()} # type: ignore
for i in range(len(micro_batches["input_ids"]))
]
def system_metrics(self) -> Dict[str, float]:
metrics = {}
if self.global_step < 3 or self.global_step % 10 == 0:
peak_gpu_mb = peak_gpu_memory()
if peak_gpu_mb is not None:
metrics["System/Peak GPU Memory (MB)"] = peak_gpu_mb
return metrics
def log_metrics_to_console(self, prefix: str, metrics: Dict[str, float]):
def format_float(value: float) -> str:
if value < 0.0001:
return str(value) # scientific notation
elif value > 1000:
return f"{int(value):,d}"
elif value > 100:
return f"{value:.1f}"
elif value > 10:
return f"{value:.2f}"
elif value > 1:
return f"{value:.3f}"
else:
return f"{value:.4f}"
log.info(
f"{prefix}\n"
+ "\n".join(
[
f" {name}={format_float(value)}"
for name, value in metrics.items()
if name == "optim/total_grad_norm"
or not name.startswith("optim/") # there's too many optimizer metrics
]
)
)
def should_log_optim_metrics_this_step(self) -> bool:
if self.cfg.wandb is None:
# We only log optimizer-specific metrics to W&B, since there are usually too many metrics
# to log to the console.
return False
optim_log_interval = self.cfg.optimizer.metrics_log_interval
if optim_log_interval is None:
optim_log_interval = self.cfg.wandb.log_interval
else:
optim_log_interval = max(optim_log_interval, self.cfg.wandb.log_interval)
return self.global_step % optim_log_interval == 0
def should_log_this_step(self) -> bool:
if self.global_step % self.cfg.console_log_interval == 0:
return True
elif self.cfg.wandb is not None and self.global_step % self.cfg.wandb.log_interval == 0:
return True
else:
return False
def eval(self) -> Dict[str, Any]:
# Zero gradients and set model to 'eval' mode.
self.optim.zero_grad(set_to_none=True)
self.dist_model.eval()
eval_metrics = {}
for evaluator in self.evaluators:
log.info(f"Running evaluation for '{evaluator.label}'...")
# Reset metrics.
evaluator.reset_metrics()
# Initialize data loader iterator.
eval_batches = iter(evaluator.eval_loader)
# Adjust how many batches to evaluate on.
num_eval_batches = (
evaluator.subset_num_batches
if evaluator.subset_num_batches is not None
else self.cfg.eval_subset_num_batches
)
if num_eval_batches > 0:
num_eval_batches = min(num_eval_batches, len(evaluator.eval_loader))
eval_batches = islice(eval_batches, num_eval_batches)
# Run model over batches.
for eval_step, eval_batch in enumerate(eval_batches):
self.eval_step(eval_batch, evaluator)
# Log to console.
if eval_step + 1 == num_eval_batches or (eval_step + 1) % self.cfg.console_log_interval == 0:
log.info(f"[eval_step={eval_step + 1}/{num_eval_batches}]")
# Get final metrics.
metrics = evaluator.compute_metrics()
eval_metrics.update(metrics)
self.log_metrics_to_console(f"{evaluator.label}", metrics)
del eval_batches
# Eval compiles a bunch more versions, and the result is terrible. This way we get back to zero.
if self.cfg.compile is not None:
torch.compiler.reset()
return eval_metrics
def check_if_cancelled(self) -> Tuple[bool, int]:
should_cancel = False
cancel_reason: Optional[str] = None
extra_steps = 0
if get_global_rank() == 0:
if self.cfg.time_limit is not None and time.time() - self._start_time >= self.cfg.time_limit:
# First check if we've reached the training time limit.
should_cancel = True
cancel_reason = "time limit reached"
extra_steps = self.cfg.extra_steps_after_cancel
elif (
self.cfg.early_stopping_factor is not None
and self.global_step > self.cfg.scheduler.t_warmup
and self.cur_train_loss > self.cfg.early_stopping_factor * self.min_train_loss
):
# Next check if early stopping loss criteria is met.
should_cancel = True
cancel_reason = "early stopping from loss increase"
elif wandb.run is not None and (api_key := os.environ.get("WANDB_API_KEY")) is not None:
# Finally, check if someone canceled the run from W&B by adding the 'cancel' / 'canceled' tag..
# We won't see it in the run object. So we have to use the import/export API to check.
from requests.exceptions import RequestException
from wandb.errors import CommError
try:
api = wandb.Api(api_key=api_key)
run = api.run(wandb.run.path)
for tag in run.tags or []:
if tag.lower() in {"cancel", "canceled", "cancelled"}:
should_cancel = True
cancel_reason = "Weights & Biases tag"
extra_steps = self.cfg.extra_steps_after_cancel
break
except (RequestException, CommError):
log.info("Failed to check if W&B run is cancelled, continuing run.")
run_canceled = synchronize_flag(should_cancel, self.device)
if run_canceled:
extra_steps = synchronize_value(extra_steps, self.device)
if cancel_reason is None:
if extra_steps > 0:
log.warning(f"Run canceled, stopping in {extra_steps} more steps...")
else:
log.warning("Run canceled")
else:
if extra_steps > 0:
log.warning(f"Run canceled due to {cancel_reason}, stopping in {extra_steps} more steps...")
else:
log.warning(f"Run canceled due to {cancel_reason}")
return run_canceled, extra_steps
def fit(self):
if self.cfg.stop_after is not None:
if self.cfg.stop_at is None:
self.cfg.stop_at = self.global_step + self.cfg.stop_after
else:
self.cfg.stop_at = min(self.cfg.stop_at, self.global_step + self.cfg.stop_after)
if self.cfg.stop_at is None:
self.cfg.stop_at = self.max_steps + 10
self._start_time = time.time()
self._gc_init_state = gc.isenabled() # cache if garbage collection is enabled, reset on close.
# Disable automatic garbage collection, FSDP doesn't work well with it.
if self.cfg.gen1_gc_interval is not None:
gc.disable()
if self.cfg.load_path is not None and self.global_step > 0 and self.cfg.eval_on_load:
eval_metrics = self.eval()
if wandb.run is not None:
wandb.log(eval_metrics, step=self.global_step)
# Set model to 'train' mode.
self.dist_model.train()
# Initialize monitors.
assert self.cfg.device_train_batch_size is not None
speed_monitor = SpeedMonitor(self.cfg.speed_monitor)
lr_monitor = LRMonitor(self.optim)
# Log system metrics at the start of training.
sys_metrics = self.system_metrics()
if sys_metrics:
self.log_metrics_to_console("Pre-train system metrics", sys_metrics)
if wandb.run is not None:
wandb.log(sys_metrics, step=0)
# Python Profiler stuff
if self.cfg.python_profiling:
python_profiler = cProfile.Profile()
else:
python_profiler = None
# PyTorch Profiler stuff
if self.cfg.torch_profiling and get_global_rank() == 0:
from torch.profiler import schedule
profiling_schedule = schedule(wait=1, warmup=5, active=3, repeat=1)
def on_trace_ready(p):
profiler_output_dir = Path(self.cfg.save_folder) / "profiler"
profiler_output_dir.mkdir(exist_ok=True)
output = p.key_averages().table(sort_by="self_cuda_time_total", row_limit=32)
log.info(f"Profile by total GPU time at step {p.step_num}:\n{output}")
output = p.key_averages().table(sort_by="self_cpu_time_total", row_limit=32)
log.info(f"Profile by total CPU time at step {p.step_num}:\n{output}")
p.export_chrome_trace(
str(trace_path := (profiler_output_dir / f"{p.step_num}.chrome_trace.json.gz"))
)
if self.cfg.remote_save_folder is not None:
upload_folder = f"{self.cfg.remote_save_folder.rstrip('/')}/profiler"
log.info(f"Tracing complete, uploading results to '{upload_folder}'...")
upload(trace_path, f"{upload_folder}/{trace_path.name}")
from torch.profiler import ProfilerActivity
torch_profiler = torch.profiler.profile(
activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA],
record_shapes=False,
profile_memory=False,
with_stack=True,
schedule=profiling_schedule,
on_trace_ready=on_trace_ready,
)
del profiling_schedule
else:
import contextlib
torch_profiler = contextlib.nullcontext()
# Train.
first_batch: bool = True
cancel_initiated: bool = False
stop_at: int = self.cfg.stop_at
save_checkpoints: bool = True
with torch_profiler as p:
for epoch in range(self.epoch or 0, self.max_epochs):
for batch in self.train_loader:
# Bookkeeping.
# NOTE: To track the global batch size / number of tokens per batch we make the assumption that all
# batches see the same number of tokens, which should be the case for language model pre-training
# (at least when drop_last=True).
# Alternatively we'd have to use a distributed all reduce over seq_len here, but I don't want that
# overhead. So for now I'm putting these assertions here so if the assumption is violated it will
# fail loudly.
batch_size, seq_len = batch["input_ids"].shape
assert seq_len == self.cfg.model.max_sequence_length
assert batch_size == self.cfg.device_train_batch_size
global_batch_size = batch_size * get_world_size() # assumes batch size equal across ranks
self.global_step += 1
self.global_train_examples_seen_this_epoch += global_batch_size
self.global_train_tokens_seen += global_batch_size * seq_len
speed_monitor.batch_start(
global_total_tokens=self.global_train_tokens_seen,
device_batch_num_tokens=batch_size * seq_len, # num tokens in batch for this device
# We start monitoring speed after the first batch since the first
# batch might be an outlier due to compiling and other initialization overhead.
num_fwd_flops=self.model.num_fwd_flops, # this is per token
num_bck_flops=self.model.num_bck_flops, # this is per token
record=not first_batch,
)
should_log_this_step = self.should_log_this_step()
# Run train step on batch.
metrics = self.train_step(batch, reduce_global_loss=should_log_this_step)
# Maybe collect other metrics.
if should_log_this_step:
# Speed metrics.
metrics.update(speed_monitor.check())
# System metrics.
metrics.update(self.system_metrics())
# Learning rate metrics.
metrics.update(lr_monitor.check())
# Log metrics to console.
if self.global_step % self.cfg.console_log_interval == 0:
if get_global_rank() == 0:
self.log_metrics_to_console(
f"[step={self.global_step}/{self.max_steps},epoch={epoch}]",
metrics,
)
else:
log.info(f"[step={self.global_step}/{self.max_steps},epoch={epoch}]")
# Log metrics to W&B.
if (
wandb.run is not None
and self.cfg.wandb is not None
and self.global_step % self.cfg.wandb.log_interval == 0
):
wandb.log(metrics, step=self.global_step)
# Check if/when run should be canceled.
if not cancel_initiated and self.global_step % self.cfg.canceled_check_interval == 0:
cancel_initiated, extra_steps = self.check_if_cancelled()
if cancel_initiated:
stop_at = min(stop_at, self.global_step + extra_steps)
# Maybe save sharded checkpoint.
if self.cfg.distributed_strategy != DistributedStrategy.ddp:
if save_checkpoints and (
cancel_initiated
or (
self.cfg.save_interval is not None
and self.global_step % self.cfg.save_interval == 0
and self.cfg.save_num_checkpoints_to_keep != 0
)
):
log.info("Saving checkpoint...")
checkpoint_path, _ = self.save_checkpoint(CheckpointType.sharded)
log.info(f"Checkpoint saved to {checkpoint_path}")
# Remove any ephemeral checkpoints.
while self.ephemeral_checkpoints:
self.remove_ephemeral_checkpoint()
# Reset speed monitor so that we don't count the time taken to save checkpoints.
speed_monitor.reset()
# If the run was just canceled this will be the final checkpoint.
if cancel_initiated:
save_checkpoints = False
elif (
self.cfg.save_interval_ephemeral is not None
and self.global_step % self.cfg.save_interval_ephemeral == 0
):
log.info("Saving ephemeral checkpoint...")
checkpoint_path, _ = self.save_checkpoint(CheckpointType.sharded_ephemeral)
log.info(f"Checkpoint saved to {checkpoint_path}")
# Reset speed monitor so that we don't count the time taken to save checkpoints.
speed_monitor.reset()
# Maybe save unsharded checkpoint.
# This code snippet should always execute when running DDP.
if (
save_checkpoints
and self.cfg.save_interval_unsharded is not None
and self.global_step % self.cfg.save_interval_unsharded == 0
and self.cfg.save_num_unsharded_checkpoints_to_keep != 0
):
log.info("Saving unsharded checkpoint...")
checkpoint_path, _ = self.save_checkpoint(CheckpointType.unsharded)
log.info(f"Unsharded checkpoint saved to {checkpoint_path}")
# Reset speed monitor so that we don't count the time taken to save checkpoints.
speed_monitor.reset()
# Maybe run evaluations.
if not cancel_initiated and (
self.global_step % self.cfg.eval_interval == 0 or self.global_step >= stop_at
):
eval_metrics = self.eval()
# Log metrics to W&B.
if wandb.run is not None:
wandb.log(eval_metrics, step=self.global_step)
# Reset speed monitor so that we don't count the time taken to run evaluations.
speed_monitor.reset()
# Reset model to 'train' mode.
self.dist_model.train()
# End of batch.
first_batch = False
if p is not None:
p.step()
if self.global_step >= stop_at:
break
# Run generation 1 garbage collection.
if self.cfg.gen1_gc_interval is not None and self.global_step % self.cfg.gen1_gc_interval == 0:
gc.collect(1)
# Python Profiler stuff
# We do this now, at the bottom of this loop, so we capture the work of getting the next batch.
if python_profiler is not None:
if self.global_step == 5:
python_profiler.enable()
elif self.global_step == 8:
python_profiler.disable()
python_profiler.print_stats(sort=SortKey.CUMULATIVE)
python_profiler = None
else:
log.info("Training epoch complete")
self.epoch = epoch + 1
self.global_train_examples_seen_this_epoch = 0
self.dataset.start_index = 0
if self.epoch < self.max_epochs:
log.info(f"Reshuffling data loader for epoch {self.epoch}...")
self.dataset.reshuffle(self.epoch)
continue
break
# Save final checkpoint.
if save_checkpoints:
if (
self.cfg.save_interval_unsharded is not None
and self.last_unsharded_checkpoint_step != self.global_step
):
log.info("Saving final unsharded model checkpoint...")
checkpoint_path, _ = self.save_checkpoint(CheckpointType.unsharded)
log.info(f"Unsharded checkpoint saved to {checkpoint_path}")
elif (
self.cfg.save_num_checkpoints_to_keep != 0
and self.last_sharded_checkpoint_step != self.global_step
and self.cfg.distributed_strategy == DistributedStrategy.fsdp
):
log.info("Saving final checkpoint...")
checkpoint_path, _ = self.save_checkpoint(CheckpointType.sharded)
log.info(f"Checkpoint saved to {checkpoint_path}")
def close(self, exit_code: int = 0) -> None:
gc_cuda()
if self.indices_file is not None:
self.indices_file.flush()
self.indices_file.close()
if self._gc_init_state:
gc.enable()
else:
gc.disable()
if wandb.run is not None:
wandb.finish(exit_code=exit_code, quiet=True)
def __enter__(self) -> Trainer:
return self
def __exit__(self, exc_type, exc_val, exc_tb) -> None:
del exc_val, exc_tb
self.close(0 if exc_type is None else 1)