File size: 41,743 Bytes
55c82d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 |
from __future__ import annotations
from copy import deepcopy
from dataclasses import asdict, dataclass, field
from glob import glob
from pathlib import Path
from typing import (
Any,
Dict,
Iterable,
List,
Optional,
Tuple,
Type,
TypeVar,
Union,
cast,
)
import numpy as np
import torch
from omegaconf import DictConfig, ListConfig
from omegaconf import OmegaConf as om
from omegaconf.errors import OmegaConfBaseException
from torch.distributed.fsdp import MixedPrecision, ShardingStrategy
from .aliases import PathOrStr
from .exceptions import OLMoConfigurationError
from .util import StrEnum
__all__ = [
"ActivationType",
"ActivationCheckpointingStrategy",
"BlockType",
"LayerNormType",
"InitFnType",
"ModelConfig",
"OptimizerType",
"OptimizerConfig",
"SchedulerType",
"SchedulerConfig",
"DataConfig",
"InstanceFilterConfig",
"EvaluatorConfig",
"TokenizerConfig",
"TrainConfig",
"PaddingDirection",
"TruncationDirection",
"SpeedMonitorConfig",
"WandbConfig",
"CompilerConfig",
"WandbConfig",
"DDPConfig",
"DistributedStrategy",
"DDPGradSyncMode",
"FSDPPrecision",
"FSDPWrapStrategy",
"FSDPConfig",
"SingleGPUConfig",
"CheckpointType",
]
C = TypeVar("C", bound="BaseConfig")
D = TypeVar("D", bound="DictConfig|ListConfig")
class BaseConfig:
@classmethod
def _register_resolvers(cls, validate_paths: bool = True):
# Expands path globs into a list.
def path_glob(*paths) -> List[str]:
out = []
for path in paths:
matches = sorted(glob(path))
if not matches and validate_paths:
raise FileNotFoundError(f"{path} does not match any files or dirs")
out.extend(matches)
return out
# Chooses the first path in the arguments that exists.
def path_choose(*paths) -> str:
from .util import is_url
for path in paths:
if is_url(path) or Path(path).exists():
return path
if validate_paths:
raise FileNotFoundError(", ".join(paths))
else:
return ""
# Finds the latest checkpoint in a folder.
def path_last_checkpoint(path) -> str:
from .util import find_latest_checkpoint
latest_checkpoint = find_latest_checkpoint(path)
if latest_checkpoint is None:
if validate_paths:
raise FileNotFoundError(f"Could not find a latest checkpoint at {path}")
else:
return ""
else:
return str(latest_checkpoint)
om.register_new_resolver("path.glob", path_glob, replace=True)
om.register_new_resolver("path.choose", path_choose, replace=True)
om.register_new_resolver("path.last_checkpoint", path_last_checkpoint, replace=True)
@classmethod
def update_legacy_settings(cls, config: D) -> D:
"""
Update the legacy config settings whose schemas have undergone backwards-incompatible changes.
"""
return config
@classmethod
def new(cls: Type[C], **kwargs) -> C:
cls._register_resolvers()
conf = om.structured(cls)
try:
if kwargs:
conf = om.merge(conf, kwargs)
return cast(C, om.to_object(conf))
except OmegaConfBaseException as e:
raise OLMoConfigurationError(str(e))
@classmethod
def load(
cls: Type[C],
path: PathOrStr,
overrides: Optional[List[str]] = None,
key: Optional[str] = None,
validate_paths: bool = True,
) -> C:
"""Load from a YAML file."""
cls._register_resolvers(validate_paths=validate_paths)
schema = om.structured(cls)
try:
raw = om.load(str(path))
if key is not None:
raw = raw[key] # type: ignore
raw = cls.update_legacy_settings(raw)
conf = om.merge(schema, raw)
if overrides:
conf = om.merge(conf, om.from_dotlist(overrides))
return cast(C, om.to_object(conf))
except OmegaConfBaseException as e:
raise OLMoConfigurationError(str(e))
def save(self, path: PathOrStr) -> None:
"""Save to a YAML file."""
om.save(config=self, f=str(path))
def asdict(self, exclude: Optional[Iterable[str]] = None) -> Dict[str, Any]:
out = asdict(self) # type: ignore
if exclude is not None:
for name in exclude:
if name in out:
del out[name]
return out
def update_with(self, **kwargs):
result = deepcopy(self)
for key, value in kwargs.items():
setattr(result, key, value)
return result
class LayerNormType(StrEnum):
default = "default"
"""
The default LayerNorm implementation, equivalent to PyTorch's built-in version.
"""
low_precision = "low_precision"
"""
A low-precision version of the default LayerNorm.
"""
rms = "rms"
"""
An RMSNorm implementation. When using ``torch.compile`` this is
probably the fastest implementation.
"""
class ActivationType(StrEnum):
gelu = "gelu"
relu = "relu"
swiglu = "swiglu"
class BlockType(StrEnum):
sequential = "sequential"
llama = "llama"
"""
A block similar to the sequential block with slightly different
implementations of operations like attention to imitate the behavior of Llama.
"""
class InitFnType(StrEnum):
mitchell = "mitchell"
"""
The strategy suggested to us by Mitchell Wortsman from UW.
This uses a truncated normal distribution with an adaptive standard deviation that depends
on the size of the weights as well as the depth of the layer.
"""
normal = "normal"
"""
All weights are initialized from the same normal distribution.
"""
kaiming_normal = "kaiming_normal"
"""
All weights are initialized with the Kaiming method from a normal distribution.
Note this currently won't work with FSDP.
"""
fan_in = "fan_in"
"""
"Fan-in variance scaling", i.e. normal with a standard deviation of ``1/sqrt(d_in)`` where ``d_in``
is the input dimensionality of the kernel.
"""
full_megatron = "full_megatron"
"""
This is what metaseq calls "full megatron init". It is the init used for Llama 2.
"""
@dataclass
class ModelConfig(BaseConfig):
"""
OLMo (model) configuration.
"""
# Note that the defaults for these attributes are equivalent to the base GPT2 model.
d_model: int = 768
"""
The hidden size of the model.
"""
n_heads: int = 12
"""
The number of self-attention heads.
"""
n_kv_heads: Optional[int] = None
"""
The number of heads to use for keys and values. Defaults to `n_heads`.
Set this to ``None`` or ``n_heads`` for normal multi-head attention.
Set this to 1 for multi-query attention.
Set it to some in-between value for Llama2-style grouped query attention.
"""
clip_qkv: Optional[float] = None
"""
Clip QKV to this value when set.
"""
n_layers: int = 12
"""
The number of layers/blocks.
"""
mlp_ratio: int = 4
"""
The ratio of the inner MLP dimensionality to ``d_model``.
This is only used when ``mlp_hidden_size`` is not set.
"""
mlp_hidden_size: Optional[int] = None
"""
Set the exact hidden size for the MLP. Otherwise the inner MLP hidden size will be set to `mlp_ratio * d_model`.
"""
activation_type: ActivationType = ActivationType.swiglu
"""
The activation function to use within the MLP layers.
"""
block_type: BlockType = BlockType.sequential
"""
The transformer block implementation.
"""
block_group_size: int = 1
"""
The number of blocks to group together into a single parent block.
This has no affect on the number of parameters in the model and is only used to wrap groups
of blocks together with a single FSDP wrapper during training.
"""
alibi: bool = False
"""
If ``True``, use ALiBi embeddings. Mutually exclusive with ``rope``.
"""
alibi_bias_max: float = 8.0
"""
Maximum absolute value of ALiBi bias.
"""
rope: bool = False
"""
Use rotary positional embeddings (RoPE). Mutually exclusive with ``alibi``.
"""
rope_full_precision: bool = True
"""
If ``True``, apply RoPE embeddings at full precision regardless of the input type. Otherwise,
apply RoPE at the precision of the input.
"""
rope_theta: int = 10_000
"""
The theta setting for RoPE.
"""
flash_attention: bool = False
"""
If ``True``, use ``FlashAttention``.
"""
attention_dropout: float = 0.1
"""
The dropout probability within the attention modules.
"""
multi_query_attention: Optional[bool] = None
"""
Deprecated. Use n_kv_heads instead.
"""
attention_layer_norm: bool = False
"""
Apply layer norm to the keys and queries within the attention mechanism.
This can help stabilize training.
"""
residual_dropout: float = 0.1
"""
The dropout probability for the MLP and attention output within each block.
"""
embedding_dropout: float = 0.1
"""
The dropout probability for embeddings.
"""
embedding_layer_norm: bool = False
"""
Apply layer norm directly to the embeddings.
"""
layer_norm_type: LayerNormType = LayerNormType.default
"""
The layernorm implementation to use.
"""
layer_norm_with_affine: bool = True
"""
Whether to include bias and weight parameters for the layer norms.
This only affects layer norms that are immediately followed by a linear layer in the forward pass,
so everything except QK-norms. To turn off affines for QK norms as well, set :attr:`attention_layer_norm_with_affine`
to ``False``.
"""
layer_norm_eps: float = 1e-05
attention_layer_norm_with_affine: bool = True
"""
Toggle affine transform for the QK norms.
"""
max_sequence_length: int = 1024
"""
The maximum input sequence length supported by the model.
"""
include_bias: bool = True
"""
Whether or not to include bias parameters in linear layers.
In PaLM, they got rid of all bias terms because they found that large
models tend to have near 0 bias terms anyway.
"""
bias_for_layer_norm: Optional[bool] = None
"""
Whether or not to include bias parameters in layer norm.
This is separate from the include_bias parameter, because of a ROCm crash when biases are disabled in
layer norm.
When this is None (the default), it inherits the setting from include_bias.
"""
scale_logits: bool = False
"""
If ``True``, scale the output logits by ``1 / sqrt(d_model)``.
"""
vocab_size: int = 50257
"""
Vocabulary size of the model.
"""
embedding_size: Optional[int] = 50304
"""
The number of embeddings, i.e. the number of tokens. If set to ``None`` it will default
to ``vocab_size``. If ``vocab_size`` is not a multiple of 128, setting this to the
next multiple of 128 that's greater than ``vocab_size`` can improve throughput
substantially.
"""
weight_tying: bool = True
"""
Whether to tie output linear weights to the input embedding.
"""
eos_token_id: int = 50256
"""
The ID of the end-of-sentence special token.
"""
pad_token_id: int = 50256
"""
The ID of the token to use for padding. Defaults to the ID of the EOS token.
"""
init_device: Optional[str] = None
"""
The torch device to use when initializing the model parameters, e.g. "cpu", "cuda:0", "meta".
"""
init_fn: InitFnType = InitFnType.normal
"""
The weight initialization strategy.
"""
init_std: float = 0.02
"""
The standard deviation to use when initializing weights with a "fixed distribution" ``init_fn``, such
as "normal".
"""
init_cutoff_factor: Optional[float] = None
"""
A positive factor used to scale the cutoff values when initializing weights with a "fixed distribution" ``init_fn``, such
as "normal". Setting this to None means values are not cutoff.
"""
precision: Optional[str] = None
"""
Precision used to train/evaluate with. You shouldn't set this directly.
See :data:`TrainConfig.precision` instead.
"""
scale_emb_init: bool = False
"""
If ``True``, embeddings are scaled up by ``sqrt(d_model)`` during initialization.
Currently this is only used with `full_megatron` init when ``emb_init_std`` is unset.
"""
emb_init_std: Optional[float] = None
"""
Override the standard deviation to use when initializing the embedding weights.
"""
norm_after: bool = False
"""
Apply norm after the attention/feedforward layers rather than before, as introduced in the Swin transformer paper (Liu et al).
"""
use_ATF: Optional[bool] = False
p_ratio: float = 0.25
attention_activation: Optional[str] = None
@property
def effective_n_kv_heads(self) -> int:
if self.n_kv_heads is None:
if self.multi_query_attention is True:
return 1
else:
return self.n_heads
else:
if self.multi_query_attention is None:
return self.n_kv_heads
if self.multi_query_attention:
n_kv_heads_should_be = 1
else:
n_kv_heads_should_be = self.n_heads
if self.n_kv_heads == n_kv_heads_should_be:
return n_kv_heads_should_be
else:
raise OLMoConfigurationError(
"You can't set `multi_query_attention` and `n_kv_heads` at the same time."
)
class OptimizerType(StrEnum):
lionw = "lionw"
adamw = "adamw"
@dataclass
class OptimizerConfig(BaseConfig):
name: OptimizerType = OptimizerType.lionw
learning_rate: float = 1.0e-4
weight_decay: float = 0.01
betas: Tuple[float, float] = (0.9, 0.95)
eps: float = 1e-5
no_decay_norm_and_bias: Optional[bool] = None
"""
Deprecated. Use ``decay_norm_and_bias`` and ``decay_embeddings`` instead.
"""
selective_updates: bool = False
"""
If ``True``, optimizer parameter and state updates are skipped when the corresponding gradient is 0.
"""
decay_norm_and_bias: bool = False
decay_embeddings: bool = False
metrics_log_interval: Optional[int] = None
"""
The interval with which to collect and log detailed parameter-specific metrics.
This only applies when logging to W&B, since these metrics won't be logged to the console.
If not set, defaults to the wandb `log_interval`.
"""
record_update_metrics: bool = False
"""
Whether to record detailed metrics about the optimizer's parameter updates, like the norm and max
of the update with AdamW.
"""
def __post_init__(self):
self.betas = tuple(self.betas) # type: ignore[assignment]
@classmethod
def update_legacy_settings(cls, config: D) -> D:
new_config = config.copy()
if om.is_dict(new_config):
assert isinstance(new_config, DictConfig)
if hasattr(new_config, "name") and new_config.name == "decoupled_lionw":
new_config.name = "lionw"
if hasattr(new_config, "eps"):
del new_config.eps
return new_config
class SchedulerType(StrEnum):
cosine_with_warmup = "cosine_with_warmup"
linear_with_warmup = "linear_with_warmup"
inverse_sqrt_with_warmup = "inverse_sqrt_with_warmup"
max_scheduler = "max_scheduler"
constant = "constant"
cosine_linear_envelope = "cosine_linear_envelope"
constant_with_warmup = "constant_with_warmup"
class SchedulerUnits(StrEnum):
steps = "steps"
tokens = "tokens"
@dataclass
class SchedulerConfig(BaseConfig):
name: SchedulerType = SchedulerType.cosine_with_warmup
units: SchedulerUnits = SchedulerUnits.steps
t_warmup: Union[int, float] = 100
t_max: Optional[Union[int, float]] = None
alpha_f: float = 0.1
grad_clip_warmup_steps: Optional[Union[int, float]] = None
"""
The warmup period for which the max grad norm (or norm ratio) will be set to its
warmup value of `max_grad_norm * grad_clip_warmup_factor`.
"""
grad_clip_warmup_factor: Optional[float] = None
"""
The ratio of the max allowed gradient norm (or norm ratio) for clipping during the warmup period
vs after the warmup period.
"""
warmup_min_lr: Optional[float] = None
"""
The starting LR during the warmup period. If not set this defaults to 10% of
the target LR.
"""
class PaddingDirection(StrEnum):
right = "right"
left = "left"
@dataclass
class InstanceFilterConfig(BaseConfig):
repetition_max_period: int = 13
repetition_min_period: int = 1
repetition_max_count: int = 32
@dataclass
class DataConfig(BaseConfig):
paths: Optional[List[str]] = None
memmap_dtype: str = "uint16"
datasets: Optional[Dict[str, List[str]]] = None
label_mask_paths: Optional[List[str]] = None
pad_direction: PaddingDirection = PaddingDirection.right
generate_attention_mask: bool = False
generate_doc_lengths: bool = False
num_workers: int = 0
drop_last: bool = False
pin_memory: bool = False
prefetch_factor: Optional[int] = None
persistent_workers: bool = False
timeout: int = 0
seed: Optional[int] = None
instance_filter: Optional[InstanceFilterConfig] = None
custom_dataset: Optional[CustomDatasetConfig] = None
@property
def effective_memmap_dtype(self):
try:
# getattr will check this is part of numpy module, while np.dtype will check
# if this is a valid numpy dtype.
np.dtype(dtype := getattr(np, self.memmap_dtype))
except (AttributeError, TypeError) as e:
raise TypeError(f"Value {self.memmap_dtype} is not a valid numpy type") from e
return dtype
@dataclass
class CustomDatasetCollatorConfig(BaseConfig):
input_id_field: str = "input_ids" #: The field in the dataset items that contains the input token IDs.
attention_mask_field: Optional[str] = None #: The field in the dataset items that contains the attention mask.
attention_bias_field: Optional[str] = None #: The field in the dataset items that contains the attention bias.
label_mask_field: Optional[str] = None #: The field in the dataset items that contains the label mask.
index_field: Optional[str] = None #: The field in the dataset items that contains the index of the item.
instance_mask_field: Optional[str] = None #: The field in the dataset items that contains the instance mask.
doc_lens_field: Optional[str] = None #: The field in the dataset items that contains the document lengths.
metadata_field: Optional[str] = None #: The field in the dataset items that contains the metadata.
@dataclass
class CustomDatasetConfig(BaseConfig):
name: str #: The name of the custom dataset class or function that will be used to load the dataset.
module: Optional[
str
] = None #: The module where the custom dataset class is defined. If not set, the module will be inferred from the class name.
args: Optional[Dict[str, Any]] = None #: The arguments to pass to the custom dataset class or function
collate_fn: Optional[
str
] = None #: The name of the collate function to use for the custom dataset. Assumes the collate function is defined in the same module as the custom dataset class unless specified otherwise using the full object path.
token_field: Optional[str] = None #: The field in the dataset items that contains the tokenized text.
collate_config: Optional[CustomDatasetCollatorConfig] = field(
default_factory=CustomDatasetCollatorConfig
) #: The configuration for the collate function to use for the custom dataset.
class EvaluatorType(StrEnum):
downstream = "downstream"
lm = "lm"
@dataclass
class EvaluatorConfig(BaseConfig):
label: str
type: EvaluatorType = EvaluatorType.lm
data: DataConfig = field(default_factory=DataConfig)
device_eval_batch_size: Optional[int] = None
subset_num_batches: Optional[int] = None
class TruncationDirection(StrEnum):
right = "right"
left = "left"
@dataclass
class TokenizerConfig(BaseConfig):
identifier: str = "gpt2"
truncate_direction: TruncationDirection = TruncationDirection.right
@dataclass
class WandbConfig(BaseConfig):
project: Optional[str] = None
entity: Optional[str] = "ai2-llm"
group: Optional[str] = None
name: Optional[str] = None
tags: Optional[List[str]] = field(default_factory=lambda: ["watching"])
log_artifacts: bool = False
rank_zero_only: bool = True
log_interval: int = 1
@dataclass
class SpeedMonitorConfig(BaseConfig):
window_size: int = 100
gpu_flops_available: Optional[Union[float, int]] = None
@dataclass
class CompilerConfig(BaseConfig):
mode: Optional[str] = None
"""
The mode to compile the model in. At the moment this can be "default",
"reduce-overhead" (useful for smaller models/batches), or "max-autotune"
(the fastest for larger models, but takes a long time to compile).
"""
fullgraph: bool = False
"""
Whether it is OK to break model into several subgraphs when compiling.
Note that this is not compatible with FSDP.
"""
backend: str = "inductor"
"""
The backend to use.
"""
dynamic: Optional[bool] = None
"""
From the torch docs:
Use dynamic shape tracing. When this is True, we will up-front attempt to generate a kernel that is as dynamic
as possible to avoid recompilations when sizes change. This may not always work as some
operations/optimizations will force specialization; use TORCH_LOGS=dynamic to debug overspecialization. When
this is False, we will NEVER generate dynamic kernels, we will always specialize. By default (None), we
automatically detect if dynamism has occurred and compile a more dynamic kernel upon recompile.
"""
class DistributedStrategy(StrEnum):
ddp = "ddp"
"""
Wrap OLMo in torch.nn.parallel.DistributedDataParallel to train across ranks.
"""
fsdp = "fsdp"
"""
Wrap OLMo in torch.distributed.fsdp.FullyShardedDataParallel to train across ranks.
"""
single = "single"
"""
Train on a single device, i.e., do not distribute training. For development and debugging.
"""
class DDPGradSyncMode(StrEnum):
batch = "batch"
"""
Synchronize gradients after computation at each bucket only at the last micro-batch.
This is slightly faster than gradient syncs across each micro-batch but will consume more memory.
Can use this mode only when `find_unused_params` is set to False.
"""
micro_batch = "micro_batch"
"""
Synchronize gradients after computation at each bucket per micro-batch.
This will be slightly slower than gradient sync at the last micro-batch, but will consume less memory.
Can use this mode with both option of `find_unused_params` but specifically recommended to use with `find_unused_params`
set to True, to prevent errors.
"""
@dataclass
class DDPConfig(BaseConfig):
grad_sync_mode: DDPGradSyncMode = DDPGradSyncMode.batch
"""
Gradient sync mode for DDP
Note: When `find_unused_params` is set, set `grad_sync_mode` to `micro_batch` as different micro-batches might activate
different parts of the model, ex- MOEs.
"""
find_unused_params: bool = False
"""
(from torch documentation)
This mode allows running backward on a subgraph of the model, and DDP finds out which parameters
are involved in the backward pass by traversing the autograd graph from the model output and marking
all unused parameters as ready for reduction. Note that traversing the autograd graph introduces extra overheads,
so applications should only set find_unused_parameters to True when necessary.
"""
class FSDPWrapStrategy(StrEnum):
by_block = "by_block"
"""
Wrap each OLMo block with its own FSDP instance.
"""
by_block_and_size = "by_block_and_size"
"""
Like 'by_block' but `wte` and `ff_out` will be wrapped separately as well.
"""
by_block_group = "by_block_group"
"""
Wrap each block group together into its own FSDP instance.
This requires :attr:`~ModelConfig.block_group_size` to be bigger than 1.
"""
by_block_group_and_size = "by_block_group_and_size"
"""
Like 'by_block_group' but `wte` and `ff_out` will be wrapped separately as well.
"""
size_based = "size_based"
"""
Used PyTorch's default size-based auto wrap policy.
"""
one_in_two = "one_in_two"
one_in_three = "one_in_three"
one_in_four = "one_in_four"
one_in_five = "one_in_five"
class FSDPPrecision(StrEnum):
pure = "pure"
"""
Equivalent to :class:`torch.distributed.fsdp.MixedPrecision` with ``param_dtype``, ``reduce_dtype``,
and ``buffer_dtype`` all set to the autocast precision data type.
"""
mixed = "mixed"
"""
Equivalent to :class:`torch.distributed.fsdp.MixedPrecision` with ``param_dtype``, and ``buffer_dtype``
set to the autocast precision data type, while ``reduce_dtype`` is set to fp32.
"""
@dataclass
class FSDPConfig(BaseConfig):
use_orig_params: bool = True
"""
This must be ``True`` if using ``compile`` or you want to track the parameter norm during training.
"""
sharding_strategy: ShardingStrategy = ShardingStrategy.FULL_SHARD
wrapping_strategy: Optional[FSDPWrapStrategy] = None
"""
The wrapping strategy to use. If ``None``, the default, the model is wrapped with a single top-level
FSDP instance.
"""
precision: Optional[FSDPPrecision] = FSDPPrecision.pure
hybrid_sharding_num_model_replicas: Optional[int] = None
"""
The number of model instances, when using a hybrid sharding strategy.
If not ``None``, this must divide the total number of nodes. If ``None``, the default,
a model instance is used per node (as determined by ``get_world_size() // get_local_world_size()``).
PyTorch's default HSDP behavior matches this default behavior.
"""
@dataclass
class SingleGPUConfig(BaseConfig):
device: str = "auto"
"""
Device to run single-device training.
"""
def get_device(self):
if self.device == "auto":
if torch.backends.mps.is_available():
return torch.device("mps")
elif torch.cuda.is_available():
return torch.device("cuda")
else:
return torch.device("cpu")
elif self.device == "mps" and not torch.backends.mps.is_available():
raise OLMoConfigurationError("MPS not available.")
elif self.device == "cuda" and not torch.cuda.is_available():
raise OLMoConfigurationError("CUDA not available.")
else:
return torch.device(self.device)
class CheckpointType(StrEnum):
sharded = "sharded"
unsharded = "unsharded"
sharded_ephemeral = "sharded_ephemeral"
class ShardedCheckpointerType(StrEnum):
torch_new = "torch_new"
torch_legacy = "torch_legacy"
local = "local"
olmo_core = "olmo_core"
class ActivationCheckpointingStrategy(StrEnum):
whole_layer = "whole_layer"
"""
Checkpoint every transformer layer.
"""
one_in_two = "one_in_two"
"""
Checkpoint one in two transformer layers.
"""
one_in_three = "one_in_three"
"""
Checkpoint one in three transformer layers.
"""
one_in_four = "one_in_four"
"""
Checkpoint one in four transformer layers.
"""
one_in_eight = "one_in_eight"
"""
Checkpoint one in eight transformer layers.
"""
two_in_three = "two_in_three"
"""
Checkpoint two out of every three transformer layers.
"""
three_in_four = "three_in_four"
"""
Checkpoint three out of four of every transformer layers.
"""
fine_grained = "fine_grained"
"""
Focus checkpointing on where it is cheap to recompute and saves most memory.
"""
@dataclass
class TrainConfig(BaseConfig):
"""
OLMo training configuration.
"""
run_name: Optional[str] = None
"""
The name of the run.
"""
seed: int = 6198
"""
Used to seed all initial RNG states.
"""
epoch: Optional[int] = None
"""
Increment this when starting a new epoch.
"""
dry_run: bool = False
"""
If ``True``, don't actually train.
"""
model: ModelConfig = field(default_factory=ModelConfig)
"""
OLMo Model configuration.
"""
optimizer: OptimizerConfig = field(default_factory=OptimizerConfig)
"""
Optimizer configuration.
"""
scheduler: SchedulerConfig = field(default_factory=SchedulerConfig)
"""
Learning rate scheduler configuration.
"""
data: DataConfig = field(default_factory=DataConfig)
"""
Training data configuration.
"""
restore_dataloader: bool = True
"""
When restarting, restore the data loader to where it left off.
If you restarting in order to train on a different dataset, set this to ``False``.
"""
fast_forward_batches: Optional[int] = None
"""
When restarting, use this to fast-forward the dataloader beyond the last checkpoint.
This can be useful when restarting due to a loss spike in order to skip the data that
corresponded to the spike.
"""
evaluators: List[EvaluatorConfig] = field(default_factory=list)
"""
Evaluation configurations.
"""
eval_interval: int = 1000
"""
How often (in terms of batches) to run evaluations.
"""
tokenizer: TokenizerConfig = field(default_factory=TokenizerConfig)
"""
Tokenizer configuration.
"""
save_folder: str = "./"
"""
The directory to save checkpoints to.
"""
remote_save_folder: Optional[str] = None
"""
A folder in a cloud bucket to upload saved checkpoints to.
"""
canceled_check_interval: int = 50
"""
How often (in batches) to check if the run has been canceled or reached its time limit.
"""
save_interval: Optional[int] = 1000
"""
How often (in terms of steps) to save sharded training state checkpoints.
"""
save_interval_unsharded: Optional[int] = None
"""
How often (if at all) to save unsharded training state checkpoint.
For large models it can be costly to save these, so it usually makes sense to save
these less often than regular (sharded) training checkpoints.
"""
save_interval_ephemeral: Optional[int] = None
"""
How often (if at all) to save ephemeral sharded checkpoints. These checkpoints are the same
as those saved every `save_interval` except that at most only the most recent one of these is kept.
This is useful when you want to checkpoint often for restarts in case of failures, but don't
want to keep the majority of these checkpoints.
For example, suppose you want to keep your checkpoints at every 1000 steps, but you also want to save
a temporary checkpoint every 100 steps in case your job fails. In that case you would
set `save_interval=1000` and `save_interval_ephemeral=100`.
"""
save_num_checkpoints_to_keep: int = -1
"""
How many sharded checkpoints to keep.
"""
save_num_unsharded_checkpoints_to_keep: int = -1
"""
How many unsharded checkpoints to keep.
"""
save_overwrite: bool = False
"""
If ``True``, overwrite any conflicting checkpoint files.
"""
force_save_unsharded: bool = False
"""
Save an unsharded checkpoint before training (even during a dry run).
Use this option with `--load-path={PATH}` and `--dry_run` to convert a sharded
checkpoint into an unsharded checkpoint.
"""
no_pre_train_checkpoint: bool = False
"""
Skip saving pre-train checkpoint.
"""
load_path: Optional[str] = None
"""
The path to a training checkpoint to restore/resume from. If not set, then training begins from scratch.
Note that you can make use of the "path.last_checkpoint" Omegaconfig YAML resolver here, which takes
a local or remote directory and resolves to the latest checkpoint (sharded or unsharded) in that directory.
For example,
```bash
--load_path='${path.last_checkpoint:s3://ai2-llm/checkpoints/7b/v1_5-mix-run-001}'
```
If `try_load_latest_save` is set and saved checkpoints exist, then `load_path` will be overriden
by the latest saved checkpoint.
"""
load_path_sharded_checkpointer: Optional[ShardedCheckpointerType] = None
"""
The sharded checkpointer type to use to load the initial checkpoint from ``load_path``.
"""
try_load_latest_save: bool = False
"""
If set, then training will be resumed from the latest checkpoint in the local save folder, falling
back to the latest checkpoint in the remote save folder if none exists. If there are no checkpoints
in the local and remote save folders, then checkpoint loading will fall back to `load_path`.
"""
reset_optimizer_state: bool = False
"""
When this is set, we restore the model from a checkpoint (if given), but we leave the optimizer uninitialized.
We also set a new learning rate schedule that does a new warmup, such that it intercepts the original learning
curve (according to the current learning rate schedule settings), and continues from there.
"""
reset_trainer_state: bool = False
"""
When this is set we don't restore the trainer state from a checkpoint.
"""
sharded_checkpointer: ShardedCheckpointerType = ShardedCheckpointerType.torch_legacy
"""
The name of the sharded checkpointer to use to save (sharded) checkpoints throughout training.
"""
new_style_checkpoints: Optional[bool] = None
"""
Deprecated. Use ``sharded_checkpointer`` instead.
"""
max_duration: Union[int, str] = 10000
"""
How long to train for.
If specified without a unit (the default), the units are assumed to be steps.
You can also specify this in terms of tokens, for example: `max_duration="2e12T"` means train until
2 trillion tokens.
"""
global_train_batch_size: int = 512
"""
The effective global batch size.
"""
device_train_batch_size: Optional[int] = None # calculated automatically
"""
Don't set this manually. This will be set to ``global_train_batch_size // world_size``.
"""
device_train_microbatch_size: int = 16
"""
The number of instances passed to the model in a single forward-backward pass. You should set
this as large as you can based on available GPU memory.
"""
device_eval_batch_size: int = 16
"""
The number of evaluation instances passed to the model in a single forward pass on each device.
"""
eval_subset_num_batches: int = -1
"""
The number of batches to use for downstream evaluation from each dataset.
"""
eval_on_load: bool = False
"""
When resuming from a checkpoint, run the evaluation loop right away.
"""
device_train_grad_accum: Optional[int] = None # calculated automatically
"""
Don't set this manually. This will be set to ``device_train_batch_size // device_train_microbatch_size``.
"""
max_grad_norm: Optional[float] = None
"""
Clip gradient norms to this value if set.
"""
max_grad_norm_ratio: Optional[float] = None
"""
If set, gradient norms will be clipped to `max_grad_norm_ratio * exp_avg(norm(grad))`.
This takes priority over `max_grad_norm` when set.
"""
precision: Optional[str] = None
"""
Precision to train with (e.g. "amp_bf16", "amp_fp16", or "fp32").
"""
wandb: Optional[WandbConfig] = None
"""
Weights & Biases configuration.
"""
speed_monitor: SpeedMonitorConfig = field(default_factory=SpeedMonitorConfig)
"""
Speed monitor configuration.
"""
console_log_interval: int = 1
"""
How often to log to the console.
"""
gen1_gc_interval: Optional[int] = 1
"""
How often (in steps) to run generation 1 garbage collection.
Set to ``None`` to use automatic garbage collection (i.e. we don't mess with it).
"""
compile: Optional[CompilerConfig] = None
"""
Settings for compiling the model with ``torch.compile()``.
"""
distributed_strategy: Optional[DistributedStrategy] = DistributedStrategy.fsdp
"""
Distributed strategy for OLMo model (eg. single GPU, DDP, FSDP).
"""
fsdp: Optional[FSDPConfig] = field(default_factory=FSDPConfig)
"""
Fully sharded data parallel settings.
"""
ddp: Optional[DDPConfig] = None
"""
DDP settings.
"""
single: SingleGPUConfig = field(default_factory=lambda: SingleGPUConfig(device="auto"))
"""
Single device settings for GPU/CPU/MPS. Defaults to auto-detect the best device.
"""
softmax_auxiliary_loss: bool = False
"""
If ``True``, we add the auxiliary loss function from PaLM that encourages the softmax
normalizing term to be close to 0.
"""
auxiliary_loss_multiplier: Optional[float] = 1e-4
"""
Used with `softmax_auxiliary_loss`. PaLM uses 1e-4, Chameleon uses 1e-5.
"""
time_limit: Optional[float] = None
"""
The maximum amount of time to train for before saving a checkpoint and ending early.
"""
extra_steps_after_cancel: int = 10
"""
Under certain conditions when a run is canceled we train for a few extra steps after saving
the final checkpoint so that when the run is restarted from the latest checkpoint we have some
overlap in metrics.
"""
early_stopping_factor: Optional[float] = None
save_data_indices: bool = True
"""
Save training data indices from each batch for each worker.
"""
python_profiling: bool = False
"""
Whether to run the Python profiler on batches 6, 7, and 8.
"""
torch_profiling: bool = False
"""
Whether to run the PyTorch profiler on batches 6, 7, and 8.
"""
stop_at: Optional[int] = None
"""
Stop at a specific step.
"""
stop_after: Optional[int] = None
"""
Stop after a specific number of steps.
"""
activation_checkpointing: Optional[ActivationCheckpointingStrategy] = None
"""
The activation checkpointing strategy to use.
"""
fused_loss: Optional[bool] = None
"""
Whether to use the fused CE loss function from `flash-attn`.
"""
hf_datasets_cache_dir: Optional[str] = None
"""
Deprecated, HF datasets are now stored in `olmo_data.hf_datasets`.
Path to cache directory of HF datasets saved with `datasets.save_to_disk`.
"""
module_outputs_save_steps: Optional[List[int]] = None
"""
Outputs of model submodules are saved during the provided steps. Submodule outputs
can be compared using `scripts/compare_module_outputs.py`.
"""
@property
def autocast_precision(self) -> torch.dtype:
if self.precision == "amp_bf16":
return torch.bfloat16
elif self.precision == "amp_fp16":
return torch.float16
elif self.precision == "fp32":
return torch.float32
else:
raise ValueError(f"Unexpected precision type '{self.precision}'")
@property
def fsdp_precision(self) -> Optional[MixedPrecision]:
if self.fsdp is not None:
if self.fsdp.precision is None:
return None
elif self.fsdp.precision == FSDPPrecision.pure:
return MixedPrecision(
param_dtype=self.autocast_precision,
reduce_dtype=self.autocast_precision,
buffer_dtype=self.autocast_precision,
)
elif self.fsdp.precision == FSDPPrecision.mixed:
return MixedPrecision(
param_dtype=self.autocast_precision,
reduce_dtype=torch.float32,
buffer_dtype=self.autocast_precision,
)
else:
raise NotImplementedError(f"{self.fsdp.precision}")
else:
raise ValueError("self.fsdp is None!")
@classmethod
def update_legacy_settings(cls, config: D) -> D:
new_config = config.copy()
if om.is_dict(new_config):
assert isinstance(new_config, DictConfig)
if hasattr(new_config, "activation_checkpointing"):
if new_config.activation_checkpointing is False:
new_config.activation_checkpointing = None
if new_config.activation_checkpointing is True:
new_config.activation_checkpointing = ActivationCheckpointingStrategy.whole_layer
if hasattr(new_config, "optimizer"):
new_config.optimizer = OptimizerConfig.update_legacy_settings(new_config.optimizer)
return new_config
|