File size: 2,000 Bytes
20ca67f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: mit
base_model: facebook/esm2_t12_35M_UR50D
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: esm2_t12_35M_UR50D-finetuned-localization
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# esm2_t12_35M_UR50D-finetuned-localization

This model is a fine-tuned version of [facebook/esm2_t12_35M_UR50D](https://huggingface.co/facebook/esm2_t12_35M_UR50D) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6460
- Accuracy: 0.5988

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 192
- eval_batch_size: 192
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.6832        | 1.0   | 1539  | 0.6716          | 0.5395   |
| 0.6411        | 2.0   | 3078  | 0.6368          | 0.5798   |
| 0.6178        | 3.0   | 4617  | 0.6281          | 0.5901   |
| 0.5951        | 4.0   | 6156  | 0.6293          | 0.5947   |
| 0.5682        | 5.0   | 7695  | 0.6460          | 0.5988   |
| 0.5395        | 6.0   | 9234  | 0.6822          | 0.5930   |
| 0.5107        | 7.0   | 10773 | 0.7306          | 0.5935   |
| 0.484         | 8.0   | 12312 | 0.7839          | 0.5906   |
| 0.4562        | 9.0   | 13851 | 0.8433          | 0.5917   |
| 0.4302        | 10.0  | 15390 | 0.8882          | 0.5893   |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.1+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0