likejazz commited on
Commit
22cb1c2
ยท
0 Parent(s):

Initialized

Browse files
.gitattributes ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,274 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ - ko
5
+ license: cc-by-nc-4.0
6
+ tags:
7
+ - dnotitia
8
+ - nlp
9
+ - llm
10
+ - slm
11
+ - conversation
12
+ - chat
13
+ - reasoning
14
+ - r1
15
+ base_model:
16
+ - microsoft/phi-4
17
+ library_name: transformers
18
+ pipeline_tag: text-generation
19
+ ---
20
+
21
+ # DNA-R1
22
+
23
+ <p align="center">
24
+ <img src="assets/dna-r1-logo.png" width="400" style="margin: 40px auto;">
25
+ </p>
26
+
27
+ We introduce **DNA-R1**, a specialized reasoning model optimized for Korean language based on Microsoft's Phi-4. By applying large-scale reinforcement learning (RL) using the same methodology as DeepSeek-R1, we have significantly enhanced the model's Korean reasoning capabilities. This model demonstrates deep understanding of Korean text and exhibits exceptional reasoning abilities across mathematics, coding, and general reasoning tasks.
28
+
29
+ <p align="center">
30
+ <img src="assets/dna-r1-pipeline.png" width="100%" style="margin: 40px auto;">
31
+ </p>
32
+
33
+ ## Training Methodology
34
+
35
+ Our comprehensive training pipeline consists of three strategic stages:
36
+
37
+ - **Stage 1:** Initial SFT with a large Korean non-reasoning dataset (760k examples) reused from our [DNA 1.0 8B Instruct](https://huggingface.co/dnotitia/Llama-DNA-1.0-8B-Instruct) training pipeline
38
+ - **Stage 2:** Strategic integration of Korean reasoning patterns from DeepSeek R1 using a specialized Korean reasoning dataset (300k examples)
39
+ - **Stage 3:** Advanced reinforcement learning with GRPO using a combined Korean/English reasoning dataset, with format, accuracy, and language consistency as rewards
40
+
41
+ DNA-R1 has learned reasoning patterns specifically tailored for Korean language, and demonstrates capabilities such as self-verification, reflection, and generation of long chains-of-thought (CoT). This represents a significant milestone for the AI research community in the Korean language environment.
42
+
43
+ ## Model Specifications
44
+
45
+ - **Developed by:** Dnotitia Inc.
46
+ - **Supported Languages:** Korean, English
47
+ - **Model Release Date:** Mar 4, 2025
48
+ - **Number of Parameters:** 14B
49
+ - **License:** CC BY-NC 4.0
50
+
51
+ <div style="padding: 2px 8px; background-color: hsl(240, 100%, 50%, 0.1); border-radius: 5px">
52
+ <p><strong>NOTICE (Korean):</strong></p>
53
+ <p>๋ณธ ๋ชจ๋ธ์€ ์ƒ์—…์  ๋ชฉ์ ์œผ๋กœ ํ™œ์šฉํ•˜์‹ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ƒ์—…์  ์ด์šฉ์„ ์›ํ•˜์‹œ๋Š” ๊ฒฝ์šฐ, ๋””๋…ธํ‹ฐ์‹œ์•„ ํ™ˆํŽ˜์ด์ง€์˜ <a href="https://www.dnotitia.com/contact/post-form">Contact us</a>๋ฅผ ํ†ตํ•ด ๋ฌธ์˜ํ•ด ์ฃผ์‹œ๊ธฐ ๋ฐ”๋ž๋‹ˆ๋‹ค. ๊ฐ„๋‹จํ•œ ํ˜‘์˜ ์ ˆ์ฐจ๋ฅผ ๊ฑฐ์ณ ์ƒ์—…์  ํ™œ์šฉ์„ ์Šน์ธํ•ด ๋“œ๋ฆฌ๋„๋ก ํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค.</p>
54
+ </div>
55
+
56
+ ## Technical Details
57
+
58
+ ### Multi-Stage Training Pipeline
59
+
60
+ We implemented a sophisticated training approach to enhance Phi-4's Korean reasoning capabilities:
61
+
62
+ 1. **Initial Foundation (Stage 1):** Supervised Fine-Tuning using our extensive Korean non-reasoning dataset from the established [DNA 1.0 8B Instruct](https://huggingface.co/dnotitia/Llama-DNA-1.0-8B-Instruct) training pipeline
63
+ 2. **Reasoning Integration (Stage 2):** Specialized adaptation of DeepSeek R1's reasoning patterns with Korean-specific optimization through a meticulously curated dataset
64
+ 3. **Advanced Refinement (Stage 3):** Reinforcement learning optimization using GRPO to perfect reasoning in both Korean and English, with comprehensive reward signals for format structure, factual accuracy, and language consistency
65
+
66
+ This methodical approach enables DNA-R1 to develop sophisticated chain-of-thought (CoT) reasoning for complex problem solving, resulting in a model finely calibrated for Korean language reasoning while maintaining robust general capabilities.
67
+
68
+ ### Performance Highlights
69
+
70
+ Our Korean-specific multi-stage training pipeline significantly enhances the Phi-4 base model's understanding of Korean context, reasoning depth, and response capabilities. The model excels at:
71
+
72
+ - Generating nuanced Korean chains-of-thought (CoT)
73
+ - Performing rigorous self-verification
74
+ - Solving multi-step complex problems
75
+ - Maintaining cultural and linguistic context in reasoning
76
+ - Distinguishing between deep thinking and concise answers using the `<think>` and `<answer>` tags
77
+
78
+ ## Evaluation Results
79
+
80
+ Below, we present our evaluation results for the DNA-R1 model across math, coding, science, Korean, and general-performance benchmarks.
81
+ Despite being only 14B in size, the DNA-R1 model demonstrates superior performance compared to many larger models across various benchmarks.
82
+
83
+ <table>
84
+ <thead>
85
+ <tr>
86
+ <th>Benchmark</th>
87
+ <th>Task</th>
88
+ <th>DNA-R1-14B v1.0</th>
89
+ <th>DeepSeek-R1-Distill-Qwen-14B</th>
90
+ <th>DeepSeek-R1-Distill-Qwen-32B</th>
91
+ <th>EXAONE-3.5-32B-Instruct<th>
92
+ <th>QwQ-32B-Preview</th>
93
+ <th>gpt-4o-0513</th>
94
+ <th>o1-mini</th>
95
+ <th>o1-preview</th>
96
+ </tr>
97
+ </thead>
98
+ <tbody>
99
+ <tr>
100
+ <td>GSM8K</td>
101
+ <td rowspan="4">Math</td>
102
+ <td><b>92.49</b></td>
103
+ <td>88.63</td>
104
+ <td>82.64</td>
105
+ <td><u>91.9</u></td>
106
+ <td>82.41</td>
107
+ <td>-</td>
108
+ <td>-</td>
109
+ <td>-</td>
110
+ </tr>
111
+ <tr>
112
+ <td>Math500</td>
113
+ <td><u>89.4</u></td>
114
+ <td>88.2</td>
115
+ <td>87.4</td>
116
+ <td>-</td>
117
+ <td><b>92.2</b></td>
118
+ <td>75.8</td>
119
+ <td>85.6</td>
120
+ <td>81.4</td>
121
+ </tr>
122
+ <tr>
123
+ <td>AIME2024</td>
124
+ <td>53.3</td>
125
+ <td><u>69.7</u></td>
126
+ <td><b>72.6</b></td>
127
+ <td>6.67</td>
128
+ <td>50.0</td>
129
+ <td>8.6</td>
130
+ <td>64.0</td>
131
+ <td>40</td>
132
+ </tr>
133
+ <tr>
134
+ <td>OlympiadBench (Math, EN)</td>
135
+ <td><u>59.3</u></td>
136
+ <td>56.82</td>
137
+ <td>55.34</td>
138
+ <td>-</td>
139
+ <td><b>62.17</b></td>
140
+ <td>-</td>
141
+ <td>-</td>
142
+ <td>59.2</td>
143
+ </tr>
144
+ <tr>
145
+ <td>GPQA-Diamond</td>
146
+ <td>Science/Reasoning</td>
147
+ <td><u>61.11</u></td>
148
+ <td>59.1</td>
149
+ <td>58.08</td>
150
+ <td>33.33</td>
151
+ <td>52.5</td>
152
+ <td>46.5</td>
153
+ <td>60</td>
154
+ <td><b>75.2</b></td>
155
+ </tr>
156
+ <tr>
157
+ <td>LiveCodeBench</td>
158
+ <td>Coding</td>
159
+ <td>50.58</td>
160
+ <td>59.88</td>
161
+ <td><u>61.65</u></td>
162
+ <td>-</td>
163
+ <td>59.12</td>
164
+ <td>50.48</td>
165
+ <td><b>72.75</b></td>
166
+ <td>59.14</td>
167
+ </tr>
168
+ <tr>
169
+ <td>KMMLU-direct</td>
170
+ <td rowspan="3">Korean</td>
171
+ <td><u>59.9</u></td>
172
+ <td>50.5</td>
173
+ <td>58.62</td>
174
+ <td>-</td>
175
+ <td><b>62.96</b></td>
176
+ <td>-</td>
177
+ <td>-</td>
178
+ <td>-</td>
179
+ </tr>
180
+ <tr>
181
+ <td>KMMLU-hard</td>
182
+ <td><u>36.65</u></td>
183
+ <td>25.34</td>
184
+ <td>33.67</td>
185
+ <td>-</td>
186
+ <td><b>37.98</b></td>
187
+ <td>-</td>
188
+ <td>-</td>
189
+ <td>-</td>
190
+ </tr>
191
+ <tr>
192
+ <td>KoBEST</td>
193
+ <td><u>83.05</u></td>
194
+ <td>74.32</td>
195
+ <td>78.53</td>
196
+ <td>-</td>
197
+ <td><b>85.93</b></td>
198
+ <td>-</td>
199
+ <td>-</td>
200
+ <td>-</td>
201
+ </tr>
202
+ <tr>
203
+ <td>MMLU-Pro</td>
204
+ <td rowspan="3">General</td>
205
+ <td><u>57.64</u></td>
206
+ <td>50.55</td>
207
+ <td><b>59.58</b></td>
208
+ <td>-</td>
209
+ <td>46.82</td>
210
+ <td>-</td>
211
+ <td>-</td>
212
+ <td>-</td>
213
+ </tr>
214
+ </tbody>
215
+ </table>
216
+
217
+ - The *highest* *scores* are in **bold** form, and the *second*\-*highest* *scores* are <u>underlined</u>.
218
+ - All benchmarks are evaluated with [lm-eval](https://github.com/EleutherAI/lm-evaluation-harness) and [skythought-eval](https://github.com/NovaSky-AI/SkyThought/tree/main/skythought/evals).
219
+
220
+ ## Quickstart
221
+
222
+ ```python
223
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
224
+
225
+ tokenizer = AutoTokenizer.from_pretrained('dnotitia/DNA-R1')
226
+ model = AutoModelForCausalLM.from_pretrained('dnotitia/DNA-R1', device_map='auto')
227
+ streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
228
+
229
+ conversation = [
230
+ {"role": "user", "content": """
231
+ ์–ด๋ ค์„œ๋ถ€ํ„ฐ ์šฐ๋ฆฌ ์ง‘์€ ๊ฐ€๋‚œํ–ˆ์—ˆ๊ณ 
232
+ ๋‚จ๋“ค ๋‹คํ•˜๋Š” ์™ธ์‹ ๋ช‡ ๋ฒˆ ํ•œ ์ ์ด ์—†์—ˆ๊ณ 
233
+ ์ผํ„ฐ์— ๋‚˜๊ฐ€์‹  ์–ด๋จธ๋‹ˆ ์ง‘์— ์—†์œผ๋ฉด
234
+ ์–ธ์ œ๋‚˜ ํ˜ผ์ž์„œ ๋“์—ฌ ๋จน์—ˆ๋˜ ๋ผ๋ฉด
235
+ ๊ทธ๋Ÿฌ๋‹ค ๋ผ๋ฉด์ด ๋„ˆ๋ฌด ์ง€๊ฒจ์›Œ์„œ
236
+ ๋ง›์žˆ๋Š” ๊ฒƒ ์ข€ ๋จน์ž๊ณ  ๋Œ€๋“ค์—ˆ์—ˆ์–ด
237
+ ๊ทธ๋Ÿฌ์ž ์–ด๋จธ๋‹˜์ด ๋งˆ์ง€๋ชปํ•ด ๊บผ๋‚ด์‹ 
238
+ ์ˆจ๊ฒจ๋‘์‹  ๋น„์ƒ๊ธˆ์œผ๋กœ ์‹œ์ผœ์ฃผ์‹ 
239
+ ์งœ์žฅ๋ฉด ํ•˜๋‚˜์— ๋„ˆ๋ฌด๋‚˜ ํ–‰๋ณตํ–ˆ์—ˆ์–ด
240
+ ํ•˜์ง€๋งŒ ์–ด๋จธ๋‹˜์€ ์™ ์ง€ ๋“œ์‹œ์งˆ ์•Š์•˜์–ด
241
+ ์–ด๋จธ๋‹˜์€ ์งœ์žฅ๋ฉด์ด ์‹ซ๋‹ค๊ณ  ํ•˜์…จ์–ด
242
+ ์–ด๋จธ๋‹˜์€ ์งœ์žฅ๋ฉด์ด ์‹ซ๋‹ค๊ณ  ํ•˜์…จ์–ด
243
+ ์•ผ์ด์•ผ~์•ผ ๊ทธ๋ ‡๊ฒŒ ์‚ด์•„๊ฐ€๊ณ 
244
+ ๊ทธ๋ ‡๊ฒŒ ํ›„ํšŒํ•˜๊ณ  ๋ˆˆ๋ฌผ๋„ ํ˜๋ฆฌ๊ณ 
245
+ ์•ผ์ด์•ผ~์•ผ ๊ทธ๋ ‡๊ฒŒ ์‚ด์•„๊ฐ€๊ณ 
246
+ ๋„ˆ๋ฌด๋‚˜ ์•„ํ”„๊ณ  ํ•˜์ง€๋งŒ ๋‹ค์‹œ ์›ƒ๊ณ 
247
+ ---
248
+ ์นœ๊ตฌ๊ฐ€ ์“ด ์‹œ์ธ๋ฐ, ์—ฌ๊ธฐ์„œ ์นœ๊ตฌ์˜ ์–ด๋จธ๋‹ˆ๊ฐ€ ์งœ์žฅ๋ฉด์ด ์‹ซ๋‹ค๊ณ  ํ•˜์‹  ์ด์œ ๋Š”?"""},
249
+ ]
250
+ inputs = tokenizer.apply_chat_template(conversation,
251
+ add_generation_prompt=True,
252
+ return_dict=True,
253
+ return_tensors="pt").to(model.device)
254
+ _ = model.generate(**inputs, streamer=streamer)
255
+ ```
256
+
257
+
258
+ ## License
259
+
260
+ This model is released under CC BY-NC 4.0 license. If you have any questions or commercial usage inquiries, please [Contact us](https://www.dnotitia.com/contact/post-form).
261
+
262
+ ## Citation
263
+
264
+ If you use or discuss this model in your academic research, please cite the project to help spread awareness:
265
+
266
+ ```
267
+ @misc{dnar12025,
268
+ title={DNA R1},
269
+ author={Jungyup Lee and Jemin Kim and Sang Park and SeungJae Lee},
270
+ year={2025},
271
+ publisher={HuggingFace},
272
+ url={https://huggingface.co/dnotitia/DNA-R1}
273
+ }
274
+ ```
assets/dna-r1-logo.png ADDED
assets/dna-r1-pipeline.png ADDED