# utils/data_loader.py import torch from torch.utils.data import Dataset, DataLoader class CustomDataset(Dataset): def __init__(self, data): self.data = data def __len__(self): return len(self.data) def __getitem__(self, idx): return self.data[idx] def load_data(batch_size=32): # Dummy data data = [torch.randn(10) for _ in range(1000)] dataset = CustomDataset(data) loader = DataLoader(dataset, batch_size=batch_size, shuffle=True) return loader