import torch | |
from agents.perception_module import PerceptionAgent | |
from agents.decision_module import DecisionAgent | |
from agents.action_module import ActionAgent | |
class MasterAgent: | |
def __init__(self, config): | |
self.perception_agent = PerceptionAgent(config) | |
self.decision_agent = DecisionAgent(config) | |
self.action_agent = ActionAgent(config) | |
self.reinforcement_learning = config.get("reinforcement_learning", True) | |
def forward(self, inputs): | |
# Process inputs through the perception agent | |
perception_output = self.perception_agent(inputs) | |
# Pass perception results to decision agent | |
decision_output = self.decision_agent(perception_output) | |
# Execute the chosen action | |
action_output = self.action_agent(decision_output) | |
return action_output | |
def learn(self, feedback): | |
# Implement reinforcement learning logic to adjust task allocation | |
if self.reinforcement_learning: | |
# Update sub-agent weights based on feedback | |
pass | |