Upload README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: en
|
3 |
+
license: mit
|
4 |
+
base_model: google-bert/bert-base-uncased
|
5 |
+
tags:
|
6 |
+
- token-classification
|
7 |
+
- bert-base-uncased
|
8 |
+
datasets:
|
9 |
+
- disham993/ElectricalNER
|
10 |
+
metrics:
|
11 |
+
- epoch: 1.0
|
12 |
+
- eval_precision: 0.8835414301929625
|
13 |
+
- eval_recall: 0.9227851102505334
|
14 |
+
- eval_f1: 0.9027369723210142
|
15 |
+
- eval_accuracy: 0.956991714467814
|
16 |
+
- eval_runtime: 2.6822
|
17 |
+
- eval_samples_per_second: 562.603
|
18 |
+
- eval_steps_per_second: 8.948
|
19 |
+
---
|
20 |
+
|
21 |
+
# disham993/electrical-ner-bert-base
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
This model is fine-tuned from [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) for token-classification tasks.
|
26 |
+
|
27 |
+
## Training Data
|
28 |
+
|
29 |
+
The model was trained on the disham993/ElectricalNER dataset.
|
30 |
+
|
31 |
+
## Model Details
|
32 |
+
- **Base Model:** google-bert/bert-base-uncased
|
33 |
+
- **Task:** token-classification
|
34 |
+
- **Language:** en
|
35 |
+
- **Dataset:** disham993/ElectricalNER
|
36 |
+
|
37 |
+
## Training procedure
|
38 |
+
|
39 |
+
### Training hyperparameters
|
40 |
+
[Please add your training hyperparameters here]
|
41 |
+
|
42 |
+
## Evaluation results
|
43 |
+
|
44 |
+
### Metrics\n- epoch: 1.0\n- eval_precision: 0.8835414301929625\n- eval_recall: 0.9227851102505334\n- eval_f1: 0.9027369723210142\n- eval_accuracy: 0.956991714467814\n- eval_runtime: 2.6822\n- eval_samples_per_second: 562.603\n- eval_steps_per_second: 8.948
|
45 |
+
|
46 |
+
## Usage
|
47 |
+
|
48 |
+
```python
|
49 |
+
from transformers import AutoTokenizer, AutoModel
|
50 |
+
|
51 |
+
tokenizer = AutoTokenizer.from_pretrained("disham993/electrical-ner-bert-base")
|
52 |
+
model = AutoModel.from_pretrained("disham993/electrical-ner-bert-base")
|
53 |
+
```
|
54 |
+
|
55 |
+
## Limitations and bias
|
56 |
+
|
57 |
+
[Add any known limitations or biases of the model]
|
58 |
+
|
59 |
+
## Training Infrastructure
|
60 |
+
|
61 |
+
[Add details about training infrastructure used]
|
62 |
+
|
63 |
+
## Last update
|
64 |
+
|
65 |
+
2024-12-30
|