Update modeling_roberta_sentiment.py
Browse files- modeling_roberta_sentiment.py +86 -86
modeling_roberta_sentiment.py
CHANGED
@@ -1,86 +1,86 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
import
|
4 |
-
|
5 |
-
class
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
)
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
self.
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
self.
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
cls_token = x[:, 0]
|
85 |
-
logits = self.classifier(cls_token)
|
86 |
-
return logits
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from transformers import PreTrainedModel, PretrainedConfig
|
4 |
+
|
5 |
+
class RobertaSentimentConfig(PretrainedConfig):
|
6 |
+
model_type = "roberta-sentiment"
|
7 |
+
|
8 |
+
def __init__(self,
|
9 |
+
vocab_size=30000,
|
10 |
+
hidden_size=512,
|
11 |
+
num_attention_heads=8,
|
12 |
+
num_hidden_layers=6,
|
13 |
+
intermediate_size=2048,
|
14 |
+
max_position_embeddings=128,
|
15 |
+
num_labels=5,
|
16 |
+
hidden_dropout_prob=0.1,
|
17 |
+
**kwargs):
|
18 |
+
super().__init__(**kwargs)
|
19 |
+
self.vocab_size = vocab_size
|
20 |
+
self.hidden_size = hidden_size
|
21 |
+
self.num_attention_heads = num_attention_heads
|
22 |
+
self.num_hidden_layers = num_hidden_layers
|
23 |
+
self.intermediate_size = intermediate_size
|
24 |
+
self.max_position_embeddings = max_position_embeddings
|
25 |
+
self.num_labels = num_labels
|
26 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
27 |
+
|
28 |
+
class TransformerBlock(nn.Module):
|
29 |
+
def __init__(self, hidden_dim, num_heads, ffn_dim, dropout):
|
30 |
+
super().__init__()
|
31 |
+
self.attn_norm = nn.LayerNorm(hidden_dim)
|
32 |
+
self.ffn_norm = nn.LayerNorm(hidden_dim)
|
33 |
+
self.attn = nn.MultiheadAttention(hidden_dim, num_heads, dropout=dropout, batch_first=True)
|
34 |
+
self.ffn = nn.Sequential(
|
35 |
+
nn.Linear(hidden_dim, ffn_dim),
|
36 |
+
nn.GELU(),
|
37 |
+
nn.Linear(ffn_dim, hidden_dim),
|
38 |
+
nn.Dropout(dropout)
|
39 |
+
)
|
40 |
+
self.dropout = nn.Dropout(dropout)
|
41 |
+
|
42 |
+
def forward(self, x, attention_mask):
|
43 |
+
batch_size, seq_len, _ = x.size()
|
44 |
+
x_norm = self.attn_norm(x)
|
45 |
+
attn_mask = (1 - attention_mask).bool()
|
46 |
+
attn_out, _ = self.attn(x_norm, x_norm, x_norm, key_padding_mask=attn_mask)
|
47 |
+
x = x + self.dropout(attn_out)
|
48 |
+
x_norm = self.ffn_norm(x)
|
49 |
+
x = x + self.dropout(self.ffn(x_norm))
|
50 |
+
return x
|
51 |
+
|
52 |
+
class RobertaForSentimentClassification(PreTrainedModel):
|
53 |
+
config_class = RobertaSentimentConfig
|
54 |
+
|
55 |
+
def __init__(self, config):
|
56 |
+
super().__init__(config)
|
57 |
+
|
58 |
+
self.token_emb = nn.Embedding(config.vocab_size, config.hidden_size)
|
59 |
+
self.position_emb = nn.Embedding(config.max_position_embeddings, config.hidden_size)
|
60 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
61 |
+
|
62 |
+
self.layers = nn.ModuleList([
|
63 |
+
TransformerBlock(config.hidden_size, config.num_attention_heads,
|
64 |
+
config.intermediate_size, config.hidden_dropout_prob)
|
65 |
+
for _ in range(config.num_hidden_layers)
|
66 |
+
])
|
67 |
+
|
68 |
+
self.classifier = nn.Sequential(
|
69 |
+
nn.Linear(config.hidden_size, config.hidden_size),
|
70 |
+
nn.GELU(),
|
71 |
+
nn.Dropout(config.hidden_dropout_prob),
|
72 |
+
nn.Linear(config.hidden_size, config.num_labels)
|
73 |
+
)
|
74 |
+
|
75 |
+
self.init_weights()
|
76 |
+
|
77 |
+
def forward(self, input_ids, attention_mask):
|
78 |
+
batch_size, seq_len = input_ids.size()
|
79 |
+
positions = torch.arange(0, seq_len, device=input_ids.device).unsqueeze(0).expand(batch_size, seq_len)
|
80 |
+
x = self.token_emb(input_ids) + self.position_emb(positions)
|
81 |
+
x = self.dropout(x)
|
82 |
+
for layer in self.layers:
|
83 |
+
x = layer(x, attention_mask)
|
84 |
+
cls_token = x[:, 0]
|
85 |
+
logits = self.classifier(cls_token)
|
86 |
+
return {"logits": logits}
|