Merge branch 'main' of https://huggingface.co/diffusers/tools into main
Browse files- run_local.py +5 -1
run_local.py
CHANGED
|
@@ -2,14 +2,18 @@
|
|
| 2 |
from diffusers import StableDiffusionPipeline, DPMSolverSinglestepScheduler, DPMSolverMultistepScheduler, DEISMultistepScheduler, HeunDiscreteScheduler
|
| 3 |
from diffusers.schedulers.scheduling_unipc_multistep import UniPCMultistepScheduler
|
| 4 |
import time
|
|
|
|
| 5 |
from huggingface_hub import HfApi
|
| 6 |
import torch
|
| 7 |
import sys
|
|
|
|
| 8 |
|
| 9 |
path = sys.argv[1]
|
| 10 |
|
| 11 |
api = HfApi()
|
| 12 |
start_time = time.time()
|
|
|
|
|
|
|
| 13 |
pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float16)
|
| 14 |
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
| 15 |
pipe = pipe.to("cuda")
|
|
@@ -20,7 +24,7 @@ generator = torch.Generator(device="cuda").manual_seed(0)
|
|
| 20 |
image = pipe(prompt, generator=generator, num_inference_steps=15).images[0]
|
| 21 |
print("Time", time.time() - start_time)
|
| 22 |
|
| 23 |
-
path = "
|
| 24 |
image.save(path)
|
| 25 |
|
| 26 |
api.upload_file(
|
|
|
|
| 2 |
from diffusers import StableDiffusionPipeline, DPMSolverSinglestepScheduler, DPMSolverMultistepScheduler, DEISMultistepScheduler, HeunDiscreteScheduler
|
| 3 |
from diffusers.schedulers.scheduling_unipc_multistep import UniPCMultistepScheduler
|
| 4 |
import time
|
| 5 |
+
import os
|
| 6 |
from huggingface_hub import HfApi
|
| 7 |
import torch
|
| 8 |
import sys
|
| 9 |
+
from pathlib import Path
|
| 10 |
|
| 11 |
path = sys.argv[1]
|
| 12 |
|
| 13 |
api = HfApi()
|
| 14 |
start_time = time.time()
|
| 15 |
+
#pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float16, device_map="auto")
|
| 16 |
+
#pipe.scheduler = HeunDiscreteScheduler.from_config(pipe.scheduler.config)
|
| 17 |
pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float16)
|
| 18 |
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
| 19 |
pipe = pipe.to("cuda")
|
|
|
|
| 24 |
image = pipe(prompt, generator=generator, num_inference_steps=15).images[0]
|
| 25 |
print("Time", time.time() - start_time)
|
| 26 |
|
| 27 |
+
path = os.path.join(Path.home(), "images", "aa.png")
|
| 28 |
image.save(path)
|
| 29 |
|
| 30 |
api.upload_file(
|