|  |  | 
					
						
						|  | from diffusers import StableDiffusionInpaintPipeline | 
					
						
						|  | import requests | 
					
						
						|  | import torch | 
					
						
						|  | from PIL import Image | 
					
						
						|  | from io import BytesIO | 
					
						
						|  |  | 
					
						
						|  | url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg" | 
					
						
						|  |  | 
					
						
						|  | def download_image(url): | 
					
						
						|  | response = requests.get(url) | 
					
						
						|  | return Image.open(BytesIO(response.content)).convert("RGB") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png" | 
					
						
						|  | mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png" | 
					
						
						|  |  | 
					
						
						|  | init_image = download_image(img_url).resize((512, 512)) | 
					
						
						|  | mask_image = download_image(mask_url).resize((512, 512)) | 
					
						
						|  |  | 
					
						
						|  | path = "runwayml/stable-diffusion-inpainting" | 
					
						
						|  |  | 
					
						
						|  | run_compile = True | 
					
						
						|  |  | 
					
						
						|  | pipe = StableDiffusionInpaintPipeline.from_pretrained(path, torch_dtype=torch.float16) | 
					
						
						|  | pipe = pipe.to("cuda:0") | 
					
						
						|  | pipe.unet.to(memory_format=torch.channels_last) | 
					
						
						|  |  | 
					
						
						|  | if run_compile: | 
					
						
						|  | print("Run torch compile") | 
					
						
						|  | pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) | 
					
						
						|  |  | 
					
						
						|  | prompt = "ghibli style, a fantasy landscape with castles" | 
					
						
						|  |  | 
					
						
						|  | for _ in range(3): | 
					
						
						|  | image = pipe(prompt=prompt, image=init_image, mask_image=mask_image).images[0] | 
					
						
						|  |  |