hlky HF staff commited on
Commit
da548cf
·
verified ·
1 Parent(s): c7628b9

new handler

Browse files
Files changed (1) hide show
  1. handler.py +31 -39
handler.py CHANGED
@@ -1,6 +1,8 @@
1
- from typing import Dict, List, Any
 
 
2
  import torch
3
- from base64 import b64decode
4
  from diffusers import AutoencoderKL
5
  from diffusers.image_processor import VaeImageProcessor
6
 
@@ -9,11 +11,7 @@ class EndpointHandler:
9
  def __init__(self, path=""):
10
  self.device = "cuda"
11
  self.dtype = torch.bfloat16
12
- self.vae = (
13
- AutoencoderKL.from_pretrained(path, torch_dtype=self.dtype)
14
- .to(self.device, self.dtype)
15
- .eval()
16
- )
17
 
18
  self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
19
  self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
@@ -35,47 +33,41 @@ class EndpointHandler:
35
  return latents
36
 
37
  @torch.no_grad()
38
- def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
39
  """
40
  Args:
41
  data (:obj:):
42
  includes the input data and the parameters for the inference.
43
  """
44
- tensor = data["inputs"]
45
- tensor = b64decode(tensor.encode("utf-8"))
46
- parameters = data.get("parameters", {})
47
- if "shape" not in parameters:
48
- raise ValueError("Expected `shape` in parameters.")
49
- if "dtype" not in parameters:
50
- raise ValueError("Expected `dtype` in parameters.")
51
- if "height" not in parameters:
52
- raise ValueError("Expected `height` in parameters.")
53
- if "width" not in parameters:
54
- raise ValueError("Expected `width` in parameters.")
55
-
56
- DTYPE_MAP = {
57
- "float16": torch.float16,
58
- "float32": torch.float32,
59
- "bfloat16": torch.bfloat16,
60
- }
61
-
62
- shape = parameters.get("shape")
63
- dtype = DTYPE_MAP.get(parameters.get("dtype"))
64
- height = parameters.get("height")
65
- width = parameters.get("width")
66
-
67
- tensor = torch.frombuffer(bytearray(tensor), dtype=dtype).reshape(shape)
68
 
69
  tensor = tensor.to(self.device, self.dtype)
 
 
70
 
71
- tensor = self._unpack_latents(tensor, height, width, self.vae_scale_factor)
72
- tensor = (
73
- tensor / self.vae.config.scaling_factor
74
- ) + self.vae.config.shift_factor
75
 
76
  with torch.no_grad():
77
- image = self.vae.decode(tensor, return_dict=False)[0]
78
 
79
- image = self.image_processor.postprocess(image, output_type="pil")
 
 
 
 
 
80
 
81
- return image[0]
 
1
+ from typing import cast, Union
2
+
3
+ import PIL.Image
4
  import torch
5
+
6
  from diffusers import AutoencoderKL
7
  from diffusers.image_processor import VaeImageProcessor
8
 
 
11
  def __init__(self, path=""):
12
  self.device = "cuda"
13
  self.dtype = torch.bfloat16
14
+ self.vae = cast(AutoencoderKL, AutoencoderKL.from_pretrained(path, torch_dtype=self.dtype).to(self.device, self.dtype).eval())
 
 
 
 
15
 
16
  self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
17
  self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
 
33
  return latents
34
 
35
  @torch.no_grad()
36
+ def __call__(self, data) -> Union[torch.Tensor, PIL.Image.Image]:
37
  """
38
  Args:
39
  data (:obj:):
40
  includes the input data and the parameters for the inference.
41
  """
42
+ tensor = cast(torch.Tensor, data["inputs"])
43
+ parameters = cast(dict, data.get("parameters", {}))
44
+ if tensor.ndim == 3 and ("height" not in parameters or "width" not in parameters):
45
+ raise ValueError("Expected `height` and `width` in parameters.")
46
+ height = cast(int, parameters.get("height", 0))
47
+ width = cast(int, parameters.get("width", 0))
48
+ do_scaling = cast(bool, parameters.get("do_scaling", True))
49
+ output_type = cast(str, parameters.get("output_type", "pil"))
50
+ partial_postprocess = cast(bool, parameters.get("partial_postprocess", False))
51
+ if partial_postprocess and output_type != "pt":
52
+ output_type = "pt"
 
 
 
 
 
 
 
 
 
 
 
 
 
53
 
54
  tensor = tensor.to(self.device, self.dtype)
55
+ if tensor.ndim == 3:
56
+ tensor = self._unpack_latents(tensor, height, width, self.vae_scale_factor)
57
 
58
+ if do_scaling:
59
+ tensor = (
60
+ tensor / self.vae.config.scaling_factor
61
+ ) + self.vae.config.shift_factor
62
 
63
  with torch.no_grad():
64
+ image = cast(torch.Tensor, self.vae.decode(tensor, return_dict=False)[0])
65
 
66
+ if partial_postprocess:
67
+ image = (image * 0.5 + 0.5).clamp(0, 1)
68
+ image = image.permute(0, 2, 3, 1).contiguous().float()
69
+ image = (image * 255).round().to(torch.uint8)
70
+ elif output_type == "pil":
71
+ image = cast(PIL.Image.Image, self.image_processor.postprocess(image, output_type="pil")[0])
72
 
73
+ return image