File size: 3,031 Bytes
b638227 a404f0a b638227 a404f0a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
---
license: mit
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: 22_12_13_luther_blocks_xl_fp16_5ep
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# 22_12_13_luther_blocks_xl_fp16_5ep
This model is a fine-tuned version of [malteos/gpt2-xl-wechsel-german](https://huggingface.co/malteos/gpt2-xl-wechsel-german) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.8833
- Accuracy: 0.4196
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 0.19 | 50 | 3.0276 | 0.3997 |
| No log | 0.38 | 100 | 2.9185 | 0.4143 |
| No log | 0.58 | 150 | 2.8846 | 0.4189 |
| No log | 0.77 | 200 | 2.8833 | 0.4196 |
| 3.0309 | 0.96 | 250 | 2.8833 | 0.4196 |
| 3.0309 | 1.15 | 300 | 2.8833 | 0.4196 |
| 3.0309 | 1.35 | 350 | 2.8833 | 0.4196 |
| 3.0309 | 1.54 | 400 | 2.8833 | 0.4196 |
| 3.0309 | 1.73 | 450 | 2.8833 | 0.4196 |
| 2.8083 | 1.92 | 500 | 2.8833 | 0.4196 |
| 2.8083 | 2.12 | 550 | 2.8833 | 0.4196 |
| 2.8083 | 2.31 | 600 | 2.8833 | 0.4196 |
| 2.8083 | 2.5 | 650 | 2.8833 | 0.4196 |
| 2.8083 | 2.69 | 700 | 2.8833 | 0.4196 |
| 2.7992 | 2.88 | 750 | 2.8833 | 0.4196 |
| 2.7992 | 3.08 | 800 | 2.8833 | 0.4196 |
| 2.7992 | 3.27 | 850 | 2.8833 | 0.4196 |
| 2.7992 | 3.46 | 900 | 2.8833 | 0.4196 |
| 2.7992 | 3.65 | 950 | 2.8833 | 0.4196 |
| 2.7935 | 3.85 | 1000 | 2.8833 | 0.4196 |
| 2.7935 | 4.04 | 1050 | 2.8833 | 0.4196 |
| 2.7935 | 4.23 | 1100 | 2.8833 | 0.4196 |
| 2.7935 | 4.42 | 1150 | 2.8833 | 0.4196 |
| 2.7935 | 4.62 | 1200 | 2.8833 | 0.4196 |
| 2.8129 | 4.81 | 1250 | 2.8833 | 0.4196 |
| 2.8129 | 5.0 | 1300 | 2.8833 | 0.4196 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0
- Datasets 2.7.1
- Tokenizers 0.12.1
|