--- license: unknown library_name: peft tags: - mistral datasets: - ehartford/dolphin - garage-bAInd/Open-Platypus inference: false pipeline_tag: text-generation base_model: mistralai/Mistral-7B-v0.1 --- # mistral-7b-instruct-v0.1 General instruction-following llm finetuned from [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1). ## Model Details ### Model Description This instruction-following llm was built via parameter-efficient QLoRA finetuning of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the first 200k rows of [ehartford/dolphin](https://huggingface.co/datasets/ehartford/dolphin). Finetuning was executed on 1x A100 (40 GB SXM) for roughly 20 hours on Google Colab. **Only** the `peft` adapter weights are included in this model repo, alonside the tokenizer. - **Developed by:** Daniel Furman - **Model type:** Decoder-only - **Language(s) (NLP):** English - **License:** Yi model license - **Finetuned from model:** [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) ### Model Sources - **Repository:** [github.com/daniel-furman/sft-demos](https://github.com/daniel-furman/sft-demos/blob/main/src/sft/one_gpu/mistral/sft-mistral-7b-instruct-peft.ipynb) ### Evaluation Results | Metric | Value | |-----------------------|-------| | MMLU (5-shot) | Coming | | ARC (25-shot) | Coming | | HellaSwag (10-shot) | Coming | | TruthfulQA (0-shot) | Coming | | Avg. | Coming | We use Eleuther.AI's [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) to run the benchmark tests above, the same version as Hugging Face's [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). ## Uses ### Direct Use [More Information Needed] ### Downstream Use [More Information Needed] ### Out-of-Scope Use [More Information Needed] ## Bias, Risks, and Limitations [More Information Needed] ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data [More Information Needed] ### Preprocessing [More Information Needed] ### Training Hyperparameters We used the [`SFTTrainer` from TRL library](https://huggingface.co/docs/trl/main/en/sft_trainer) that gives a wrapper around transformers `Trainer` to easily fine-tune models on instruction based datasets. The following `TrainingArguments` config was used: - num_train_epochs = 1 - auto_find_batch_size = True - gradient_accumulation_steps = 1 - optim = "paged_adamw_32bit" - save_strategy = "epoch" - learning_rate = 3e-4 - lr_scheduler_type = "cosine" - warmup_ratio = 0.03 - logging_strategy = "steps" - logging_steps = 25 - bf16 = True The following `bitsandbytes` quantization config was used: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: bfloat16 ### Speeds, Sizes, Times | runtime / 50 tokens (sec) | GPU | attn | torch dtype | VRAM (GB) | |:-----------------------------:|:----------------------:|:---------------------:|:-------------:|:-----------------------:| | 3.1 | 1x A100 (40 GB SXM) | torch | fp16 | 13 | ## Model Card Contact dryanfurman at gmail ## Framework versions - PEFT 0.6.0.dev0