Upload main.py
Browse files
main.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pydantic import BaseModel, validator
|
2 |
+
from peft import PeftModel, PeftConfig
|
3 |
+
from transformers import T5ForConditionalGeneration, AutoTokenizer
|
4 |
+
from fastapi import FastAPI, Request
|
5 |
+
from fastapi.middleware.cors import CORSMiddleware
|
6 |
+
|
7 |
+
app = FastAPI()
|
8 |
+
|
9 |
+
origins = ["*"]
|
10 |
+
app.add_middleware(
|
11 |
+
CORSMiddleware,
|
12 |
+
allow_origins=origins,
|
13 |
+
allow_credentials=True,
|
14 |
+
allow_methods=["*"],
|
15 |
+
allow_headers=["*"]
|
16 |
+
)
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
peft_model_id = "deutsche-welle/t5_large_peft_wnc_debiaser"
|
21 |
+
config = PeftConfig.from_pretrained(peft_model_id)
|
22 |
+
|
23 |
+
model = T5ForConditionalGeneration.from_pretrained(config.base_model_name_or_path)
|
24 |
+
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
|
25 |
+
|
26 |
+
model = PeftModel.from_pretrained(model, peft_model_id)
|
27 |
+
model.eval()
|
28 |
+
|
29 |
+
|
30 |
+
def prepare_input(sentence: str):
|
31 |
+
input_ids = tokenizer(sentence, max_length=256, return_tensors="pt").input_ids
|
32 |
+
return input_ids
|
33 |
+
|
34 |
+
|
35 |
+
def inference(sentence: str) -> str:
|
36 |
+
input_data = prepare_input(sentence=sentence)
|
37 |
+
input_data = input_data.to(model.device)
|
38 |
+
outputs = model.generate(inputs=input_data, max_length=256)
|
39 |
+
result = tokenizer.decode(token_ids=outputs[0], skip_special_tokens=True)
|
40 |
+
return result
|
41 |
+
|
42 |
+
class Response(BaseModel):
|
43 |
+
generated_text: str
|
44 |
+
|
45 |
+
|
46 |
+
@app.get("/debias", response_model=Response)
|
47 |
+
def predict_subjectivity(sentence: str):
|
48 |
+
result = inference(f"debias: {sentence} </s>")
|
49 |
+
return {"generated_text": result}
|