delarosajav95 commited on
Commit
018dea2
·
verified ·
1 Parent(s): 29fbd9b

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +33 -0
app.py ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import pipeline
3
+
4
+ pipe = pipeline(model="delarosajav95/tw-roberta-base-sentiment-FT-v2")
5
+ #function that Gradio will use to classify
6
+ def classify_text(inputs):
7
+ result = pipe(inputs, return_all_scores=True)
8
+ output = []
9
+ label_mapping = {"LABEL_0": "Negative", "LABEL_1": "Neutral", "LABEL_2": "Positive"}
10
+ for i, predictions in enumerate(result):
11
+ for pred in predictions:
12
+ label = label_mapping.get(pred['label'], pred['label'])
13
+ score = pred['score']
14
+ output.append(f"{label}: {score:.2%}")
15
+
16
+ return "\n".join(output)
17
+ #defining Gradio interface
18
+ textbox = gr.Textbox(lines=3, placeholder="Enter a user review, comment, or opinion to evaluate...(e.g., 'I love this product! It looks great.')",
19
+ label="User Review/Comment:")
20
+
21
+ output_box = gr.Textbox(label="Results:")
22
+
23
+ iface = gr.Interface(
24
+ fn=classify_text,
25
+ inputs=textbox,
26
+ outputs=output_box,
27
+ live=True,
28
+ title="Sentiment Analysis for User Opinions & Feedback",
29
+ allow_flagging="never",
30
+ )
31
+
32
+ # Launch the interface
33
+ iface.launch()