delarosajav95 commited on
Commit
e20264e
·
verified ·
1 Parent(s): 8623247

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +33 -20
README.md CHANGED
@@ -49,34 +49,47 @@ It achieves the following results on the evaluation set (last epoch):
49
  - 'epoch': 4.0
50
 
51
  It achieves the following results on the test set:
52
- -'eval_loss': 0.052769944071769714
53
- -'eval_accuracy': 0.9933244325767691
54
- -'eval_precision_per_label': [0.9956140350877193, 0.9923224568138196]
55
- -'eval_recall_per_label': [0.9826839826839827, 0.9980694980694981]
56
- -'eval_f1_per_label': [0.9891067538126361, 0.9951876804619827]
57
- -'eval_precision_weighted': 0.9933376164683867
58
- -'eval_recall_weighted': 0.9933244325767691
59
- -'eval_f1_weighted': 0.993312254486016
60
 
61
  ## Training Details and Procedure
62
 
63
- Main Hyperparameters:
 
 
64
  - learning_rate: 1e-5
65
- - train_batch_size: 8
66
- - eval_batch_size: 18
67
- - optimizer: AdamW
68
- - lr_scheduler_type: linear
69
- - num_epochs: 4
 
 
 
70
 
71
 
72
- #### Preprocessing and Postprocessing [optional]
73
 
74
- -Needed to manually map dataset creating the different sets: train 60%, validation 20%, and test 20%
75
- -Needed to manually map dataset's labels from str ("hateful", "non-hateful") to int (1,0), in order to properly create tensors.
76
- -Dynamic Padding through DataCollator was used
77
 
78
 
79
  ## More Information [optional]
80
 
81
- Fine-tuned by Javier de la Rosa Sánchez.
82
 
 
 
 
 
 
 
 
 
49
  - 'epoch': 4.0
50
 
51
  It achieves the following results on the test set:
52
+ - 'eval_loss': 0.052769944071769714
53
+ - 'eval_accuracy': 0.9933244325767691
54
+ - 'eval_precision_per_label': [0.9956140350877193, 0.9923224568138196]
55
+ - 'eval_recall_per_label': [0.9826839826839827, 0.9980694980694981]
56
+ - 'eval_f1_per_label': [0.9891067538126361, 0.9951876804619827]
57
+ - 'eval_precision_weighted': 0.9933376164683867
58
+ - 'eval_recall_weighted': 0.9933244325767691
59
+ - 'eval_f1_weighted': 0.993312254486016
60
 
61
  ## Training Details and Procedure
62
 
63
+ ## Main Hyperparameters:
64
+
65
+ - evaluation_strategy: "epoch"
66
  - learning_rate: 1e-5
67
+ - per_device_train_batch_size: 8
68
+ - per_device_eval_batch_size: 8
69
+ - num_train_epochs: 4
70
+ - weight_decay: 0.01
71
+ - save_strategy: "epoch"
72
+ - lr_scheduler_type: "linear"
73
+ - warmup_steps: 449
74
+ - logging_steps: 10
75
 
76
 
77
+ #### Preprocessing and Postprocessing:
78
 
79
+ - Needed to manually map dataset creating the different sets: train 60%, validation 20%, and test 20%.
80
+ - Needed to manually map dataset's labels from str ("hateful", "non-hateful") to int (1,0), in order to properly create tensors.
81
+ - Dynamic Padding through DataCollator was used.
82
 
83
 
84
  ## More Information [optional]
85
 
86
+ - Fine-tuned by Javier de la Rosa Sánchez.
87
88
+ - https://www.linkedin.com/in/delarosajav95/
89
+
90
+ ### Framework versions
91
+
92
+ - Transformers 4.47.0
93
+ - Pytorch 2.5.1+cu121
94
+ - Datasets 3.2.0
95
+ - Tokenizers 0.21.0