# improved_train_tokenizer_v2.py import os import sys from tokenizers import Tokenizer, models, pre_tokenizers, decoders, trainers, processors, normalizers from transformers import PreTrainedTokenizerFast # --- Configuration --- TRAIN_FILES = ["improved_sentences.txt"] # Use the preprocessed file VOCAB_SIZE = 32000 SPECIAL_TOKENS = ["", "", "", "", ""] OUTPUT_DIR = "./improved_tokenizer_v2" # --- Input File Check --- if not TRAIN_FILES or not os.path.exists(TRAIN_FILES[0]): print(f"Error: Training file '{TRAIN_FILES[0]}' not found.") sys.exit(1) print(f"Starting tokenizer training...") print(f"Training file(s): {TRAIN_FILES}") print(f"Target vocab size: {VOCAB_SIZE}") print(f"Output directory: {OUTPUT_DIR}") # --- Initialize Tokenizer --- # We'll use ByteLevel BPE with proper whitespace handling tokenizer = Tokenizer(models.BPE(unk_token="")) # --- Set Normalizer --- # This helps standardize the text before tokenization tokenizer.normalizer = normalizers.Sequence([ normalizers.NFC(), # Unicode normalization normalizers.Replace(r"\s+", " ") # Replace multiple spaces with a single space ]) # --- Set Pre-tokenizer --- # This is critical for handling whitespace correctly tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=True) # Back to True for proper space handling print(f"Using pre-tokenizer: ByteLevel(add_prefix_space=True)") # --- Set Decoder --- tokenizer.decoder = decoders.ByteLevel() print(f"Using decoder: {tokenizer.decoder.__class__.__name__}") # --- Define Trainer --- trainer = trainers.BpeTrainer( vocab_size=VOCAB_SIZE, special_tokens=SPECIAL_TOKENS, show_progress=True, initial_alphabet=pre_tokenizers.ByteLevel.alphabet(), ) # --- Train Tokenizer --- print("\nTraining the tokenizer model (this might take a while)...") try: tokenizer.train(files=TRAIN_FILES, trainer=trainer) print("Training completed successfully.") except Exception as e: print(f"\nError during tokenizer training: {e}") sys.exit(1) # --- Add Post-processor --- tokenizer.post_processor = processors.TemplateProcessing( single=" $A ", pair=" $A $B ", special_tokens=[ ("", tokenizer.token_to_id("")), ("", tokenizer.token_to_id("")), ], ) # --- Save Core Tokenizer --- os.makedirs(OUTPUT_DIR, exist_ok=True) tokenizer_path = os.path.join(OUTPUT_DIR, "tokenizer.json") try: tokenizer.save(tokenizer_path) print(f"\nCore tokenizer saved to: {tokenizer_path}") except Exception as e: print(f"Error saving core tokenizer: {e}") sys.exit(1) # --- Create and Save HF Wrapper --- print("\nWrapping tokenizer with PreTrainedTokenizerFast...") try: hf_tokenizer = PreTrainedTokenizerFast( tokenizer_file=tokenizer_path, unk_token="", pad_token="", cls_token="", sep_token="", mask_token="", add_prefix_space=True # Match the pre-tokenizer setting ) hf_tokenizer.save_pretrained(OUTPUT_DIR) print(f"Hugging Face compatible tokenizer files saved to: {OUTPUT_DIR}") except Exception as e: print(f"Error saving Hugging Face tokenizer: {e}") sys.exit(1) # --- Verification Step --- print("\n--- Verification ---") try: print(f"Loading tokenizer for verification from: {OUTPUT_DIR}") loaded_hf_tokenizer = PreTrainedTokenizerFast.from_pretrained(OUTPUT_DIR) # Test multiple cases, especially those starting with periods or spaces test_cases = [ "Simple sentence.", " Sentence starting with space.", "Sentence. Another sentence.", ". Sentence starting with period.", "Word.Word", "The quick brown fox jumps over the lazy dog." ] print("\n=== Testing with new tokenizer ===") for i, text in enumerate(test_cases): print(f"\nTest {i+1}: '{text}'") tokens = loaded_hf_tokenizer.tokenize(text) print(f"Tokens: {tokens}") encoded = loaded_hf_tokenizer.encode(text, add_special_tokens=True) decoded = loaded_hf_tokenizer.decode(encoded, skip_special_tokens=True) print(f"Encoded: {encoded}") print(f"Decoded: '{decoded}'") # Check if tokenization properly preserves content if text.strip() == decoded.strip(): print("✓ Encoding/decoding preserved text content") else: print(f"⚠ Warning: Text content changed during encoding/decoding") print(f" Original: '{text}'") print(f" Decoded: '{decoded}'") # Check first token distributions print("\n=== First Position Token Analysis ===") print("Analyzing first token after for potential bias...") # Simplified analysis of first token (just for demonstration) from collections import Counter first_token_counter = Counter() with open(TRAIN_FILES[0], 'r', encoding='utf-8') as f: for i, line in enumerate(f): if i >= 100: # Just check first 100 lines break line = line.strip() if not line: continue encoded = loaded_hf_tokenizer.encode(line, add_special_tokens=True) if len(encoded) > 1: # Make sure there's at least one token after first_token_id = encoded[1] first_token_counter[first_token_id] += 1 total = sum(first_token_counter.values()) if total > 0: print(f"\nTop 5 tokens at first position (after ) from {total} samples:") for token_id, count in first_token_counter.most_common(5): token_text = loaded_hf_tokenizer.decode([token_id]) percentage = (count / total) * 100 print(f"Token: '{token_text}' (ID: {token_id}) | Count: {count} | {percentage:.2f}%") # Specifically check period token period_id = loaded_hf_tokenizer.encode('.', add_special_tokens=False)[0] period_count = first_token_counter.get(period_id, 0) period_percentage = (period_count / total) * 100 if total > 0 else 0 print(f"\nPeriod token ('.', ID: {period_id}) at first position: {period_count} times ({period_percentage:.2f}%)") except Exception as e: print(f"Error during verification: {e}") print("\n--- Tokenizer training script finished ---")