File size: 9,902 Bytes
6ce6815 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
# train_fixed_clean_keys_v2.py
import os
import math
import random
import torch
import pandas as pd
import numpy as np
import streamlit as st
import plotly.graph_objects as go
from transformers import (
RobertaConfig, RobertaForMaskedLM, Trainer, TrainingArguments,
PreTrainedTokenizerFast, DataCollatorForLanguageModeling, TrainerCallback
)
# Import Value from datasets alongside others
from datasets import load_dataset, Features, Sequence, Value
# --- Streamlit setup ---
st.set_page_config(layout="wide")
# --- Constants ---
TOKENIZER_DIR = "tokenizer" # Ensure this matches the one used in preprocessing
DATA_PATH = "training_data.jsonl" # Ensure this is the output from sentence_aware_processor.py
OUTPUT_DIR = "./checkpoints"
VOCAB_SIZE = 32000
MAX_LEN = 512
BATCH_SIZE = 64
EPOCHS = 50
GRAD_ACC = 8
LEARNING_RATE = 1e-3
MLM_PROB = 0.15
SEED = 42
# --- Seed ---
def set_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
set_seed(SEED)
# --- Tokenizer ---
if not os.path.exists(os.path.join(TOKENIZER_DIR, "tokenizer.json")):
st.error(f"Tokenizer not found in {TOKENIZER_DIR}")
st.stop()
try:
tokenizer = PreTrainedTokenizerFast.from_pretrained(TOKENIZER_DIR)
tokenizer.model_max_length = MAX_LEN
except Exception as e:
st.error(f"Error loading tokenizer from {TOKENIZER_DIR}: {e}")
st.stop()
# --- Dataset ---
# !!! MODIFIED: Updated Features definition to match the JSONL structure !!!
features = Features({
'id': Value(dtype='int64'), # Added id field
'input_ids': Sequence(Value(dtype='int32')),
'source': Value(dtype='string') # Added source field
})
# (Error handling remains)
try:
# Load the dataset using the updated features
dataset = load_dataset("json", data_files=DATA_PATH, features=features, split="train")
#st.success(f"Loaded dataset from {DATA_PATH} with columns: {dataset.column_names}")
except Exception as e:
st.error(f"Failed to load dataset from {DATA_PATH}: {e}")
st.info(f"Ensure '{DATA_PATH}' exists and matches the features: {features}")
st.stop()
# --- Add Attention Mask ---
# This function remains the same, as it only needs 'input_ids'
if 'attention_mask' not in dataset.column_names:
def add_attention_mask(example):
# The length is derived from the 'input_ids' field
example["attention_mask"] = [1] * len(example["input_ids"])
return example
dataset = dataset.map(add_attention_mask, num_proc=max(1, os.cpu_count() // 2))
#st.info("Added 'attention_mask' column.")
# --- Collator ---
# DataCollatorForLanguageModeling will automatically ignore extra columns like 'id' and 'source'
collator = DataCollatorForLanguageModeling(
tokenizer=tokenizer,
mlm=True,
mlm_probability=MLM_PROB
)
# --- Model ---
# Model definition remains the same
config = RobertaConfig(
vocab_size=VOCAB_SIZE,
hidden_size=256,
num_hidden_layers=4,
num_attention_heads=8,
intermediate_size=1024,
max_position_embeddings=MAX_LEN + 2,
pad_token_id=tokenizer.pad_token_id,
bos_token_id=tokenizer.cls_token_id,
eos_token_id=tokenizer.sep_token_id,
)
model = RobertaForMaskedLM(config=config)
# --- UI State ---
# UI setup remains the same
log = {"step": [], "loss": [], "grad_norm": [], "perplexity": []}
progress = st.empty()
col1, col2 = st.columns(2)
with col1:
chart1_placeholder = st.empty()
chart2_placeholder = st.empty()
with col2:
chart3_placeholder = st.empty()
chart4_placeholder = st.empty()
# --- Plotting Functions (Unchanged) ---
def get_safe_range(values, pad_percent=0.1):
values = pd.Series(values).dropna()
if values.empty: return (0, 1)
if len(values) == 1: return (values.iloc[0] * 0.9, values.iloc[0] * 1.1)
numeric_values = pd.to_numeric(values, errors='coerce').dropna()
if numeric_values.empty: return (0, 1)
low, high = np.percentile(numeric_values, [2, 95])
pad = abs(high - low) * pad_percent
return max(0, low - pad), high + pad
def forecast_plot(df):
if len(df) < 10: return go.Figure(layout_title_text="Loss Forecast (Need more data)")
x = pd.to_numeric(df["step"], errors='coerce').dropna().values
y = pd.to_numeric(df["loss"], errors='coerce').dropna().values
if len(x) < 2 or len(y) < 2 or len(x) != len(y):
return go.Figure(layout_title_text="Loss Forecast (Data error)")
forecast_x = np.linspace(x[0], x[-1] * 1.5, 300)
fig = go.Figure()
fig.add_trace(go.Scatter(x=x, y=y, mode='lines', name="Actual Loss"))
for percent, color in [(1, 'orange'), (10, 'green'), (50, 'red')]:
n = max(5, int(len(x) * percent / 100))
if len(x) >= n and n >= 2:
sub_x, sub_y = x[-n:], y[-n:]
try:
valid_indices = ~np.isnan(sub_x) & ~np.isnan(sub_y)
if np.sum(valid_indices) >= 2:
m, b = np.polyfit(sub_x[valid_indices], sub_y[valid_indices], 1)
y_fit = m * forecast_x + b
fig.add_trace(go.Scatter(x=forecast_x, y=y_fit, name=f"{percent}% Trend", line=dict(dash='dot', color=color)))
except (np.linalg.LinAlgError, ValueError) as e:
print(f"Warning: Could not fit trend for {percent}%: {e}")
fig.update_layout(title="Loss Forecast", xaxis_title="Step", yaxis_title="Loss", legend_title_text='Trend % (Recent)')
return fig
# --- Streamlit Callback (Unchanged) ---
class StreamlitCallback(TrainerCallback):
def on_log(self, args, state, control, logs=None, **kwargs):
if state.is_world_process_zero:
if logs is not None and "loss" in logs:
step = state.global_step
loss = float(logs["loss"]) if isinstance(logs["loss"], (int, float)) else None
grad = float(logs.get("grad_norm")) if isinstance(logs.get("grad_norm"), (int, float)) else None
if loss is not None:
ppl = math.exp(min(loss, 700))
log["step"].append(step)
log["loss"].append(loss)
log["grad_norm"].append(grad)
log["perplexity"].append(ppl)
df = pd.DataFrame(log).dropna(subset=['step', 'loss'])
if not df.empty:
try:
r1 = get_safe_range(df["loss"])
r2 = get_safe_range(df["grad_norm"])
r3 = get_safe_range(df["perplexity"])
fig1 = go.Figure().add_trace(go.Scatter(x=df["step"], y=df["loss"], mode='lines'))
grad_norm_data = df["grad_norm"].dropna()
if not grad_norm_data.empty:
fig2 = go.Figure().add_trace(go.Scatter(x=df.loc[grad_norm_data.index, "step"], y=grad_norm_data, mode='lines'))
else:
fig2 = go.Figure()
fig3 = go.Figure().add_trace(go.Scatter(x=df["step"], y=df["perplexity"], mode='lines'))
fig1.update_layout(title="Loss", yaxis_range=r1, xaxis_title="Step", yaxis_title="Loss")
fig2.update_layout(title="Gradient Norm", yaxis_range=r2, xaxis_title="Step", yaxis_title="Grad Norm")
fig3.update_layout(title="Perplexity", yaxis_range=r3, xaxis_title="Step", yaxis_title="Perplexity")
fig4 = forecast_plot(df)
chart1_placeholder.plotly_chart(fig1, use_container_width=True, key=f"loss_chart_{step}")
chart2_placeholder.plotly_chart(fig2, use_container_width=True, key=f"grad_norm_chart_{step}")
chart3_placeholder.plotly_chart(fig3, use_container_width=True, key=f"perplexity_chart_{step}")
chart4_placeholder.plotly_chart(fig4, use_container_width=True, key=f"forecast_chart_{step}")
except Exception as e:
print(f"Error updating Streamlit charts at step {step}: {e}")
# --- Training args ---
# Training args remain the same
args = TrainingArguments(
output_dir=OUTPUT_DIR,
per_device_train_batch_size=BATCH_SIZE,
gradient_accumulation_steps=GRAD_ACC,
num_train_epochs=EPOCHS,
learning_rate=LEARNING_RATE,
lr_scheduler_type='linear',
warmup_ratio=0.1,
weight_decay=0.01,
max_grad_norm=1.0,
save_strategy="steps",
save_steps=1000,
save_total_limit=10,
logging_strategy="steps",
logging_steps=10,
dataloader_num_workers=4,
bf16=torch.cuda.is_bf16_supported(),
fp16=not torch.cuda.is_bf16_supported() and torch.cuda.is_available(),
seed=SEED,
report_to=["none"],
# !! Remember to handle checkpoints appropriately for a fresh run !!
resume_from_checkpoint=False, # Explicitly set to False for clean run
)
# --- Trainer ---
# Trainer setup remains the same
trainer = Trainer(
model=model,
args=args,
train_dataset=dataset,
data_collator=collator,
callbacks=[StreamlitCallback()]
)
# --- Train ---
# Train call remains the same
try:
# Start training (explicitly not resuming here due to args setting)
trainer.train() # No need to pass resume_from_checkpoint if set in args
progress.success("✅ Training complete.")
st.success("Training finished!")
except Exception as e:
st.error(f"Training failed: {e}")
progress.error("❌ Training stopped due to error.") |