Update README.md
Browse files
README.md
CHANGED
@@ -85,24 +85,7 @@ Due to the constraints of HuggingFace, the open-source code currently experience
|
|
85 |
|
86 |
## 4. Evaluation Results
|
87 |
### Base Model
|
88 |
-
#### Standard Benchmark
|
89 |
-
|
90 |
-
<div align="center">
|
91 |
-
|
92 |
-
| **Benchmark** | **Domain** | **LLaMA3 70B** | **Mixtral 8x22B** | **DeepSeek-V1 (Dense-67B)** | **DeepSeek-V2 (MoE-236B)** |
|
93 |
-
|:-----------:|:--------:|:------------:|:---------------:|:-------------------------:|:------------------------:|
|
94 |
-
| **MMLU** | English | 78.9 | 77.6 | 71.3 | 78.5 |
|
95 |
-
| **BBH** | English | 81.0 | 78.9 | 68.7 | 78.9 |
|
96 |
-
| **C-Eval** | Chinese | 67.5 | 58.6 | 66.1 | 81.7 |
|
97 |
-
| **CMMLU** | Chinese | 69.3 | 60.0 | 70.8 | 84.0 |
|
98 |
-
| **HumanEval** | Code | 48.2 | 53.1 | 45.1 | 48.8 |
|
99 |
-
| **MBPP** | Code | 68.6 | 64.2 | 57.4 | 66.6 |
|
100 |
-
| **GSM8K** | Math | 83.0 | 80.3 | 63.4 | 79.2 |
|
101 |
-
| **Math** | Math | 42.2 | 42.5 | 18.7 | 43.6 |
|
102 |
-
|
103 |
-
</div>
|
104 |
-
|
105 |
-
#### Standard Benchmark (Models smaller than 16B)
|
106 |
<div align="center">
|
107 |
|
108 |
| **Benchmark** | **Domain** | **DeepSeek 7B (Dense)** | **DeepSeekMoE 16B** | **DeepSeek-V2-Lite (MoE-16B)** |
|
@@ -120,32 +103,9 @@ Due to the constraints of HuggingFace, the open-source code currently experience
|
|
120 |
</div>
|
121 |
For more evaluation details, such as few-shot settings and prompts, please check our paper.
|
122 |
|
123 |
-
#### Context Window
|
124 |
-
<p align="center">
|
125 |
-
<img width="80%" src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/niah.png?raw=true">
|
126 |
-
</p>
|
127 |
-
|
128 |
-
Evaluation results on the ``Needle In A Haystack`` (NIAH) tests. DeepSeek-V2 performs well across all context window lengths up to **128K**.
|
129 |
|
130 |
### Chat Model
|
131 |
-
#### Standard Benchmark
|
132 |
-
<div align="center">
|
133 |
-
|
134 |
-
| Benchmark | Domain | QWen1.5 72B Chat | Mixtral 8x22B | LLaMA3 70B Instruct | DeepSeek-V1 Chat (SFT) | DeepSeek-V2 Chat (SFT) | DeepSeek-V2 Chat (RL) |
|
135 |
-
|:-----------:|:----------------:|:------------------:|:---------------:|:---------------------:|:-------------:|:-----------------------:|:----------------------:|
|
136 |
-
| **MMLU** | English | 76.2 | 77.8 | 80.3 | 71.1 | 78.4 | 77.8 |
|
137 |
-
| **BBH** | English | 65.9 | 78.4 | 80.1 | 71.7 | 81.3 | 79.7 |
|
138 |
-
| **C-Eval** | Chinese | 82.2 | 60.0 | 67.9 | 65.2 | 80.9 | 78.0 |
|
139 |
-
| **CMMLU** | Chinese | 82.9 | 61.0 | 70.7 | 67.8 | 82.4 | 81.6 |
|
140 |
-
| **HumanEval** | Code | 68.9 | 75.0 | 76.2 | 73.8 | 76.8 | 81.1 |
|
141 |
-
| **MBPP** | Code | 52.2 | 64.4 | 69.8 | 61.4 | 70.4 | 72.0 |
|
142 |
-
| **LiveCodeBench (0901-0401)** | Code | 18.8 | 25.0 | 30.5 | 18.3 | 28.7 | 32.5 |
|
143 |
-
| **GSM8K** | Math | 81.9 | 87.9 | 93.2 | 84.1 | 90.8 | 92.2 |
|
144 |
-
| **Math** | Math | 40.6 | 49.8 | 48.5 | 32.6 | 52.7 | 53.9 |
|
145 |
-
|
146 |
-
</div>
|
147 |
-
|
148 |
-
#### Standard Benchmark (Models smaller than 16B)
|
149 |
|
150 |
<div align="center">
|
151 |
|
@@ -162,12 +122,6 @@ Evaluation results on the ``Needle In A Haystack`` (NIAH) tests. DeepSeek-V2 pe
|
|
162 |
|
163 |
</div>
|
164 |
|
165 |
-
#### English Open Ended Generation Evaluation
|
166 |
-
We evaluate our model on AlpacaEval 2.0 and MTBench, showing the competitive performance of DeepSeek-V2-Chat-RL on English conversation generation.
|
167 |
-
<p align="center">
|
168 |
-
<img width="50%" src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/mtbench.png?raw=true" />
|
169 |
-
</p>
|
170 |
-
|
171 |
#### Chinese Open Ended Generation Evaluation
|
172 |
**Alignbench** (https://arxiv.org/abs/2311.18743)
|
173 |
<div align="center">
|
@@ -185,17 +139,10 @@ We evaluate our model on AlpacaEval 2.0 and MTBench, showing the competitive per
|
|
185 |
| DeepSeek-67B-Chat | 开源 | 6.43 | 5.75 | 7.11 |
|
186 |
| Yi-34B-Chat (零一万物) | 开源 | 6.12 | 4.86 | 7.38 |
|
187 |
| gpt-3.5-turbo-0613 | 闭源 | 6.08 | 5.35 | 6.71 |
|
188 |
-
| DeepSeek-V2-Lite 16B Chat | 开源 | 6.01 | 4.71 | 7.32 |
|
189 |
|
190 |
</div>
|
191 |
|
192 |
-
#### Coding Benchmarks
|
193 |
-
We evaluate our model on LiveCodeBench (0901-0401), a benchmark designed for live coding challenges. As illustrated, DeepSeek-V2 demonstrates considerable proficiency in LiveCodeBench, achieving a Pass@1 score that surpasses several other sophisticated models. This performance highlights the model's effectiveness in tackling live coding tasks.
|
194 |
-
|
195 |
-
<p align="center">
|
196 |
-
<img width="50%" src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/code_benchmarks.png?raw=true">
|
197 |
-
</p>
|
198 |
-
|
199 |
## 5. Model Architecture
|
200 |
DeepSeek-V2 adopts innovative architectures to guarantee economical training and efficient inference:
|
201 |
- For attention, we design MLA (Multi-head Latent Attention), which utilizes low-rank key-value union compression to eliminate the bottleneck of inference-time key-value cache, thus supporting efficient inference.
|
@@ -204,19 +151,8 @@ DeepSeek-V2 adopts innovative architectures to guarantee economical training and
|
|
204 |
<p align="center">
|
205 |
<img width="90%" src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/architecture.png?raw=true" />
|
206 |
</p>
|
207 |
-
## 6. Chat Website
|
208 |
-
You can chat with the DeepSeek-V2 on DeepSeek's official website: [chat.deepseek.com](https://chat.deepseek.com/sign_in)
|
209 |
-
|
210 |
-
## 7. API Platform
|
211 |
-
We also provide OpenAI-Compatible API at DeepSeek Platform: [platform.deepseek.com](https://platform.deepseek.com/). Sign up for over millions of free tokens. And you can also pay-as-you-go at an unbeatable price.
|
212 |
-
|
213 |
-
|
214 |
-
<p align="center">
|
215 |
-
<img width="40%" src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/model_price.png?raw=true">
|
216 |
-
</p>
|
217 |
|
218 |
-
##
|
219 |
-
**To utilize DeepSeek-V2 in BF16 format for inference, 80GB*8 GPUs are required.**
|
220 |
|
221 |
**To utilize DeepSeek-V2-Lite in BF16 format for inference, 40GB*1 GPU is required.**
|
222 |
### Inference with Huggingface's Transformers
|
@@ -326,10 +262,10 @@ llm = ChatOpenAI(
|
|
326 |
temperature=0.85,
|
327 |
max_tokens=8000)
|
328 |
```
|
329 |
-
##
|
330 |
This code repository is licensed under [the MIT License](LICENSE-CODE). The use of DeepSeek-V2 Base/Chat models is subject to [the Model License](LICENSE-MODEL). DeepSeek-V2 series (including Base and Chat) supports commercial use.
|
331 |
|
332 |
-
##
|
333 |
```
|
334 |
@misc{deepseekv2,
|
335 |
title={DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model},
|
@@ -341,5 +277,5 @@ This code repository is licensed under [the MIT License](LICENSE-CODE). The use
|
|
341 |
}
|
342 |
```
|
343 |
|
344 |
-
##
|
345 |
If you have any questions, please raise an issue or contact us at [[email protected]]([email protected]).
|
|
|
85 |
|
86 |
## 4. Evaluation Results
|
87 |
### Base Model
|
88 |
+
#### Standard Benchmark
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
<div align="center">
|
90 |
|
91 |
| **Benchmark** | **Domain** | **DeepSeek 7B (Dense)** | **DeepSeekMoE 16B** | **DeepSeek-V2-Lite (MoE-16B)** |
|
|
|
103 |
</div>
|
104 |
For more evaluation details, such as few-shot settings and prompts, please check our paper.
|
105 |
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
### Chat Model
|
108 |
+
#### Standard Benchmark
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
<div align="center">
|
111 |
|
|
|
122 |
|
123 |
</div>
|
124 |
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
#### Chinese Open Ended Generation Evaluation
|
126 |
**Alignbench** (https://arxiv.org/abs/2311.18743)
|
127 |
<div align="center">
|
|
|
139 |
| DeepSeek-67B-Chat | 开源 | 6.43 | 5.75 | 7.11 |
|
140 |
| Yi-34B-Chat (零一万物) | 开源 | 6.12 | 4.86 | 7.38 |
|
141 |
| gpt-3.5-turbo-0613 | 闭源 | 6.08 | 5.35 | 6.71 |
|
142 |
+
| DeepSeek-V2-Lite 16B Chat (SFT) | 开源 | 6.01 | 4.71 | 7.32 |
|
143 |
|
144 |
</div>
|
145 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
## 5. Model Architecture
|
147 |
DeepSeek-V2 adopts innovative architectures to guarantee economical training and efficient inference:
|
148 |
- For attention, we design MLA (Multi-head Latent Attention), which utilizes low-rank key-value union compression to eliminate the bottleneck of inference-time key-value cache, thus supporting efficient inference.
|
|
|
151 |
<p align="center">
|
152 |
<img width="90%" src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/architecture.png?raw=true" />
|
153 |
</p>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
|
155 |
+
## 6. How to run locally
|
|
|
156 |
|
157 |
**To utilize DeepSeek-V2-Lite in BF16 format for inference, 40GB*1 GPU is required.**
|
158 |
### Inference with Huggingface's Transformers
|
|
|
262 |
temperature=0.85,
|
263 |
max_tokens=8000)
|
264 |
```
|
265 |
+
## 7. License
|
266 |
This code repository is licensed under [the MIT License](LICENSE-CODE). The use of DeepSeek-V2 Base/Chat models is subject to [the Model License](LICENSE-MODEL). DeepSeek-V2 series (including Base and Chat) supports commercial use.
|
267 |
|
268 |
+
## 8. Citation
|
269 |
```
|
270 |
@misc{deepseekv2,
|
271 |
title={DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model},
|
|
|
277 |
}
|
278 |
```
|
279 |
|
280 |
+
## 9. Contact
|
281 |
If you have any questions, please raise an issue or contact us at [[email protected]]([email protected]).
|