luofuli commited on
Commit
08529b4
1 Parent(s): a6f88f2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +75 -25
README.md CHANGED
@@ -55,33 +55,37 @@
55
  Today, we’re introducing DeepSeek-V2, a strong Mixture-of-Experts (MoE) language model characterized by economical training and efficient inference. It comprises 236B total parameters, of which 21B are activated for each token. Compared with DeepSeek 67B, DeepSeek-V2 achieves stronger performance, and meanwhile saves 42.5% of training costs, reduces the KV cache by 93.3%, and boosts the maximum generation throughput to 5.76 times.
56
 
57
  <p align="center">
58
-
59
  <div style="display: flex; justify-content: center;">
60
- <img src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/activationparameters.png?raw=true" style="height:300px; width:auto; margin-right:10px">
61
- <img src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/trainingcost.png?raw=true" style="height:300px; width:auto; margin-left:10px">
62
  </div>
63
  </p>
 
64
  We pretrained DeepSeek-V2 on a diverse and high-quality corpus comprising 8.1 trillion tokens. This comprehensive pretraining was followed by a process of Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL) to fully unleash the model's capabilities. The evaluation results validate the effectiveness of our approach as DeepSeek-V2 achieves remarkable performance on both standard benchmarks and open-ended generation evaluation.
65
 
66
- ## 2. Model Downloads
67
 
68
- <div align="center">
 
69
 
70
- | **Model** | **Context Length** | **Download** |
71
- | :------------: | :------------: | :------------: |
72
- | DeepSeek-V2-Lite | 128k | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-V2-Lite) |
73
- | DeepSeek-V2-Lite-Chat (SFT) | 128k | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-V2-Lite-Chat) |
74
- | DeepSeek-V2 | 128k | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-V2) |
75
- | DeepSeek-V2-Chat (RL) | 128k | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-V2-Chat) |
76
 
 
 
 
 
 
 
77
 
78
  </div>
79
 
80
  Due to the constraints of HuggingFace, the open-source code currently experiences slower performance than our internal codebase when running on GPUs with Huggingface. To facilitate the efficient execution of our model, we offer a dedicated vllm solution that optimizes performance for running our model effectively.
81
 
82
- ## 3. Evaluation Results
83
  ### Base Model
84
- #### Standard Benchmark
85
 
86
  <div align="center">
87
 
@@ -91,11 +95,28 @@ Due to the constraints of HuggingFace, the open-source code currently experience
91
  | **BBH** | English | 81.0 | 78.9 | 68.7 | 78.9 |
92
  | **C-Eval** | Chinese | 67.5 | 58.6 | 66.1 | 81.7 |
93
  | **CMMLU** | Chinese | 69.3 | 60.0 | 70.8 | 84.0 |
94
- | **HumanEval** | Code | 48.2 | 53.1 | 45.1 | 48.8 |
95
  | **MBPP** | Code | 68.6 | 64.2 | 57.4 | 66.6 |
96
  | **GSM8K** | Math | 83.0 | 80.3 | 63.4 | 79.2 |
97
  | **Math** | Math | 42.2 | 42.5 | 18.7 | 43.6 |
98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99
  </div>
100
  For more evaluation details, such as few-shot settings and prompts, please check our paper.
101
 
@@ -107,7 +128,7 @@ For more evaluation details, such as few-shot settings and prompts, please check
107
  Evaluation results on the ``Needle In A Haystack`` (NIAH) tests. DeepSeek-V2 performs well across all context window lengths up to **128K**.
108
 
109
  ### Chat Model
110
- #### Standard Benchmark
111
  <div align="center">
112
 
113
  | Benchmark | Domain | QWen1.5 72B Chat | Mixtral 8x22B | LLaMA3 70B Instruct | DeepSeek-V1 Chat (SFT) | DeepSeek-V2 Chat (SFT) | DeepSeek-V2 Chat (RL) |
@@ -124,6 +145,23 @@ Evaluation results on the ``Needle In A Haystack`` (NIAH) tests. DeepSeek-V2 pe
124
 
125
  </div>
126
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
127
  #### English Open Ended Generation Evaluation
128
  We evaluate our model on AlpacaEval 2.0 and MTBench, showing the competitive performance of DeepSeek-V2-Chat-RL on English conversation generation.
129
  <p align="center">
@@ -137,7 +175,7 @@ We evaluate our model on AlpacaEval 2.0 and MTBench, showing the competitive per
137
  | **模型** | **开源/闭源** | **总分** | **中文推理** | **中文语言** |
138
  | :---: | :---: | :---: | :---: | :---: |
139
  | gpt-4-1106-preview | 闭源 | 8.01 | 7.73 | 8.29 |
140
- | DeepSeek-V2 Chat (RL) | 开源 | 7.91 | 7.45 | 8.35 |
141
  | erniebot-4.0-202404 (文心一言) | 闭源 | 7.89 | 7.61 | 8.17 |
142
  | DeepSeek-V2 Chat (SFT) | 开源 | 7.74 | 7.30 | 8.17 |
143
  | gpt-4-0613 | 闭源 | 7.53 | 7.47 | 7.59 |
@@ -147,6 +185,7 @@ We evaluate our model on AlpacaEval 2.0 and MTBench, showing the competitive per
147
  | DeepSeek-67B-Chat | 开源 | 6.43 | 5.75 | 7.11 |
148
  | Yi-34B-Chat (零一万物) | 开源 | 6.12 | 4.86 | 7.38 |
149
  | gpt-3.5-turbo-0613 | 闭源 | 6.08 | 5.35 | 6.71 |
 
150
 
151
  </div>
152
 
@@ -157,7 +196,7 @@ We evaluate our model on LiveCodeBench (0901-0401), a benchmark designed for liv
157
  <img width="50%" src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/code_benchmarks.png?raw=true">
158
  </p>
159
 
160
- ## 4. Model Architecture
161
  DeepSeek-V2 adopts innovative architectures to guarantee economical training and efficient inference:
162
  - For attention, we design MLA (Multi-head Latent Attention), which utilizes low-rank key-value union compression to eliminate the bottleneck of inference-time key-value cache, thus supporting efficient inference.
163
  - For Feed-Forward Networks (FFNs), we adopt DeepSeekMoE architecture, a high-performance MoE architecture that enables training stronger models at lower costs.
@@ -165,11 +204,10 @@ DeepSeek-V2 adopts innovative architectures to guarantee economical training and
165
  <p align="center">
166
  <img width="90%" src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/architecture.png?raw=true" />
167
  </p>
168
-
169
- ## 5. Chat Website
170
  You can chat with the DeepSeek-V2 on DeepSeek's official website: [chat.deepseek.com](https://chat.deepseek.com/sign_in)
171
 
172
- ## 6. API Platform
173
  We also provide OpenAI-Compatible API at DeepSeek Platform: [platform.deepseek.com](https://platform.deepseek.com/). Sign up for over millions of free tokens. And you can also pay-as-you-go at an unbeatable price.
174
 
175
 
@@ -177,8 +215,7 @@ We also provide OpenAI-Compatible API at DeepSeek Platform: [platform.deepseek.c
177
  <img width="40%" src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/model_price.png?raw=true">
178
  </p>
179
 
180
-
181
- ## 7. How to run locally
182
  **To utilize DeepSeek-V2 in BF16 format for inference, 80GB*8 GPUs are required.**
183
  ### Inference with Huggingface's Transformers
184
  You can directly employ [Huggingface's Transformers](https://github.com/huggingface/transformers) for model inference.
@@ -280,10 +317,23 @@ generated_text = [output.outputs[0].text for output in outputs]
280
  print(generated_text)
281
  ```
282
 
283
- ## 8. License
 
 
 
 
 
 
 
 
 
 
 
 
 
284
  This code repository is licensed under [the MIT License](LICENSE-CODE). The use of DeepSeek-V2 Base/Chat models is subject to [the Model License](LICENSE-MODEL). DeepSeek-V2 series (including Base and Chat) supports commercial use.
285
 
286
- ## 9. Citation
287
  ```
288
  @misc{deepseekv2,
289
  title={DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model},
@@ -295,5 +345,5 @@ This code repository is licensed under [the MIT License](LICENSE-CODE). The use
295
  }
296
  ```
297
 
298
- ## 10. Contact
299
  If you have any questions, please raise an issue or contact us at [[email protected]]([email protected]).
 
55
  Today, we’re introducing DeepSeek-V2, a strong Mixture-of-Experts (MoE) language model characterized by economical training and efficient inference. It comprises 236B total parameters, of which 21B are activated for each token. Compared with DeepSeek 67B, DeepSeek-V2 achieves stronger performance, and meanwhile saves 42.5% of training costs, reduces the KV cache by 93.3%, and boosts the maximum generation throughput to 5.76 times.
56
 
57
  <p align="center">
 
58
  <div style="display: flex; justify-content: center;">
59
+ <img src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/activationparameters.png?raw=true" style="height:400px; width:auto; margin-right:10px">
60
+ <img src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/trainingcost.png?raw=true" style="height:400px; width:auto; margin-left:10px">
61
  </div>
62
  </p>
63
+
64
  We pretrained DeepSeek-V2 on a diverse and high-quality corpus comprising 8.1 trillion tokens. This comprehensive pretraining was followed by a process of Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL) to fully unleash the model's capabilities. The evaluation results validate the effectiveness of our approach as DeepSeek-V2 achieves remarkable performance on both standard benchmarks and open-ended generation evaluation.
65
 
66
+ ## 2. News
67
 
68
+ - 2024.05.16: We released DeepSeek-V2-Lite, a lite version of DeepSeek-V2.
69
+ - 2024.05.06: We released the DeepSeek-V2.
70
 
71
+ ## 3. Model Downloads
72
+
73
+ <div align="center">
 
 
 
74
 
75
+ | **Model** | **#Total Params** | **#Activated Params** | **Context Length** | **Download** |
76
+ | :------------: | :------------: | :------------: | :------------: | :------------: |
77
+ | DeepSeek-V2-Lite | 16B | 2.4B | 32k | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-V2-Lite) |
78
+ | DeepSeek-V2-Lite-Chat (SFT) | 16B | 2.4B | 32k | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-V2-Lite-Chat) |
79
+ | DeepSeek-V2 | 236B | 21B | 128k | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-V2) |
80
+ | DeepSeek-V2-Chat (RL) | 236B | 21B | 128k | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-V2-Chat) |
81
 
82
  </div>
83
 
84
  Due to the constraints of HuggingFace, the open-source code currently experiences slower performance than our internal codebase when running on GPUs with Huggingface. To facilitate the efficient execution of our model, we offer a dedicated vllm solution that optimizes performance for running our model effectively.
85
 
86
+ ## 4. Evaluation Results
87
  ### Base Model
88
+ #### Standard Benchmark (Models larger than 67B)
89
 
90
  <div align="center">
91
 
 
95
  | **BBH** | English | 81.0 | 78.9 | 68.7 | 78.9 |
96
  | **C-Eval** | Chinese | 67.5 | 58.6 | 66.1 | 81.7 |
97
  | **CMMLU** | Chinese | 69.3 | 60.0 | 70.8 | 84.0 |
98
+ | **HumanEval** | Code | 48.2 | 53.1 | 45.1 | 48.8 |
99
  | **MBPP** | Code | 68.6 | 64.2 | 57.4 | 66.6 |
100
  | **GSM8K** | Math | 83.0 | 80.3 | 63.4 | 79.2 |
101
  | **Math** | Math | 42.2 | 42.5 | 18.7 | 43.6 |
102
 
103
+ </div>
104
+
105
+ #### Standard Benchmark (Models smaller than 16B)
106
+ <div align="center">
107
+
108
+ | **Benchmark** | **Domain** | **DeepSeek 7B (Dense)** | **DeepSeekMoE 16B** | **DeepSeek-V2-Lite (MoE-16B)** |
109
+ |:-------------:|:----------:|:--------------:|:-----------------:|:--------------------------:|
110
+ | **Architecture** | - | MHA+Dense | MHA+MoE | MLA+MoE |
111
+ | **MMLU** | English | 48.2 | 45.0 | 58.3 |
112
+ | **BBH** | English | xxxx | xxxx | 44.1 |
113
+ | **C-Eval** | Chinese | 45.0 | 40.6 | 60.3 |
114
+ | **CMMLU** | Chinese | 47.2 | 42.5 | 64.3 |
115
+ | **HumanEval** | Code | 26.2 | 26.8 | 29.9 |
116
+ | **MBPP** | Code | 39.0 | 39.2 | 43.2 |
117
+ | **GSM8K** | Math | 17.4 | 18.8 | 41.1 |
118
+ | **Math** | Math | 3.3 | 4.3 | 17.1 |
119
+
120
  </div>
121
  For more evaluation details, such as few-shot settings and prompts, please check our paper.
122
 
 
128
  Evaluation results on the ``Needle In A Haystack`` (NIAH) tests. DeepSeek-V2 performs well across all context window lengths up to **128K**.
129
 
130
  ### Chat Model
131
+ #### Standard Benchmark (Models larger than 67B)
132
  <div align="center">
133
 
134
  | Benchmark | Domain | QWen1.5 72B Chat | Mixtral 8x22B | LLaMA3 70B Instruct | DeepSeek-V1 Chat (SFT) | DeepSeek-V2 Chat (SFT) | DeepSeek-V2 Chat (RL) |
 
145
 
146
  </div>
147
 
148
+ #### Standard Benchmark (Models smaller than 16B)
149
+
150
+ <div align="center">
151
+
152
+ | Benchmark | Domain | DeepSeek 7B Chat (SFT) | DeepSeekMoE 16B Chat (SFT) | DeepSeek-V2-Lite 16B Chat (SFT) |
153
+ |:-----------:|:----------------:|:------------------:|:---------------:|:---------------------:|
154
+ | **MMLU** | English | 49.7 | 47.2 | 55.7 |
155
+ | **BBH** | English | 43.1 | 42.2 | 48.1 |
156
+ | **C-Eval** | Chinese | 44.7 | 40.0 | 60.1 |
157
+ | **CMMLU** | Chinese | 51.2 | 49.3 | 62.5 |
158
+ | **HumanEval** | Code | 45.1 | 45.7 | 57.3 |
159
+ | **MBPP** | Code | 39.0 | 46.2 | 45.8 |
160
+ | **GSM8K** | Math | 62.6 | 62.2 | 72.0 |
161
+ | **Math** | Math | 14.7 | 15.2 | 27.9 |
162
+
163
+ </div>
164
+
165
  #### English Open Ended Generation Evaluation
166
  We evaluate our model on AlpacaEval 2.0 and MTBench, showing the competitive performance of DeepSeek-V2-Chat-RL on English conversation generation.
167
  <p align="center">
 
175
  | **模型** | **开源/闭源** | **总分** | **中文推理** | **中文语言** |
176
  | :---: | :---: | :---: | :---: | :---: |
177
  | gpt-4-1106-preview | 闭源 | 8.01 | 7.73 | 8.29 |
178
+ | DeepSeek-V2 Chat (RL) | 开源 | 7.91 | 7.45 | 8.36 |
179
  | erniebot-4.0-202404 (文心一言) | 闭源 | 7.89 | 7.61 | 8.17 |
180
  | DeepSeek-V2 Chat (SFT) | 开源 | 7.74 | 7.30 | 8.17 |
181
  | gpt-4-0613 | 闭源 | 7.53 | 7.47 | 7.59 |
 
185
  | DeepSeek-67B-Chat | 开源 | 6.43 | 5.75 | 7.11 |
186
  | Yi-34B-Chat (零一万物) | 开源 | 6.12 | 4.86 | 7.38 |
187
  | gpt-3.5-turbo-0613 | 闭源 | 6.08 | 5.35 | 6.71 |
188
+ | DeepSeek-V2-Lite 16B Chat | 开源 | 6.01 | 4.71 | 7.32 |
189
 
190
  </div>
191
 
 
196
  <img width="50%" src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/code_benchmarks.png?raw=true">
197
  </p>
198
 
199
+ ## 5. Model Architecture
200
  DeepSeek-V2 adopts innovative architectures to guarantee economical training and efficient inference:
201
  - For attention, we design MLA (Multi-head Latent Attention), which utilizes low-rank key-value union compression to eliminate the bottleneck of inference-time key-value cache, thus supporting efficient inference.
202
  - For Feed-Forward Networks (FFNs), we adopt DeepSeekMoE architecture, a high-performance MoE architecture that enables training stronger models at lower costs.
 
204
  <p align="center">
205
  <img width="90%" src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/architecture.png?raw=true" />
206
  </p>
207
+ ## 6. Chat Website
 
208
  You can chat with the DeepSeek-V2 on DeepSeek's official website: [chat.deepseek.com](https://chat.deepseek.com/sign_in)
209
 
210
+ ## 7. API Platform
211
  We also provide OpenAI-Compatible API at DeepSeek Platform: [platform.deepseek.com](https://platform.deepseek.com/). Sign up for over millions of free tokens. And you can also pay-as-you-go at an unbeatable price.
212
 
213
 
 
215
  <img width="40%" src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/model_price.png?raw=true">
216
  </p>
217
 
218
+ ## 8. How to run locally
 
219
  **To utilize DeepSeek-V2 in BF16 format for inference, 80GB*8 GPUs are required.**
220
  ### Inference with Huggingface's Transformers
221
  You can directly employ [Huggingface's Transformers](https://github.com/huggingface/transformers) for model inference.
 
317
  print(generated_text)
318
  ```
319
 
320
+ ### LangChain Support
321
+ Since our API is compatible with OpenAI, you can easily use it in [langchain](https://www.langchain.com/).
322
+ Here is an example:
323
+
324
+ ```
325
+ from langchain_openai import ChatOpenAI
326
+ llm = ChatOpenAI(
327
+ model='deepseek-chat',
328
+ openai_api_key=<your-deepseek-api-key>,
329
+ openai_api_base='https://api.deepseek.com/v1',
330
+ temperature=0.85,
331
+ max_tokens=8000)
332
+ ```
333
+ ## 9. License
334
  This code repository is licensed under [the MIT License](LICENSE-CODE). The use of DeepSeek-V2 Base/Chat models is subject to [the Model License](LICENSE-MODEL). DeepSeek-V2 series (including Base and Chat) supports commercial use.
335
 
336
+ ## 10. Citation
337
  ```
338
  @misc{deepseekv2,
339
  title={DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model},
 
345
  }
346
  ```
347
 
348
+ ## 11. Contact
349
  If you have any questions, please raise an issue or contact us at [[email protected]]([email protected]).