--- library_name: transformers license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer datasets: - deepinfinityai/30_NLEM_Aug_audios_dataset metrics: - wer model-index: - name: v03_Med_30_NLEM_Aug_Tablets_Model results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: /30_NLEM_Aug_audios_dataset type: deepinfinityai/30_NLEM_Aug_audios_dataset metrics: - name: Wer type: wer value: 0.0 --- # v03_Med_30_NLEM_Aug_Tablets_Model This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the /30_NLEM_Aug_audios_dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.0001 - Wer: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - training_steps: 218 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.0899 | 1.0 | 44 | 0.0198 | 2.8571 | | 0.0007 | 2.0 | 88 | 0.0001 | 0.0 | | 0.0001 | 3.0 | 132 | 0.0001 | 0.0 | | 0.0001 | 4.0 | 176 | 0.0001 | 0.0 | ### Framework versions - Transformers 4.50.3 - Pytorch 2.5.1+cu124 - Datasets 3.5.0 - Tokenizers 0.21.0