Create model.py
Browse files
model.py
ADDED
|
@@ -0,0 +1,510 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import T5EncoderModel,T5TokenizerFast
|
| 2 |
+
import torch
|
| 3 |
+
from diffusers import FluxTransformer2DModel
|
| 4 |
+
from torch import nn
|
| 5 |
+
|
| 6 |
+
from typing import List
|
| 7 |
+
from diffusers import FlowMatchEulerDiscreteScheduler
|
| 8 |
+
from diffusers.training_utils import compute_density_for_timestep_sampling
|
| 9 |
+
import copy
|
| 10 |
+
import torch.nn.functional as F
|
| 11 |
+
import numpy as np
|
| 12 |
+
from tqdm import tqdm
|
| 13 |
+
|
| 14 |
+
from typing import Optional,Union,List
|
| 15 |
+
from datasets import load_dataset, Audio
|
| 16 |
+
from math import pi
|
| 17 |
+
import inspect
|
| 18 |
+
import yaml
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
class StableAudioPositionalEmbedding(nn.Module):
|
| 23 |
+
"""Used for continuous time
|
| 24 |
+
|
| 25 |
+
Adapted from stable audio open.
|
| 26 |
+
|
| 27 |
+
"""
|
| 28 |
+
|
| 29 |
+
def __init__(self, dim: int):
|
| 30 |
+
super().__init__()
|
| 31 |
+
assert (dim % 2) == 0
|
| 32 |
+
half_dim = dim // 2
|
| 33 |
+
self.weights = nn.Parameter(torch.randn(half_dim))
|
| 34 |
+
|
| 35 |
+
def forward(self, times: torch.Tensor) -> torch.Tensor:
|
| 36 |
+
times = times[..., None]
|
| 37 |
+
freqs = times * self.weights[None] * 2 * pi
|
| 38 |
+
fouriered = torch.cat((freqs.sin(), freqs.cos()), dim=-1)
|
| 39 |
+
fouriered = torch.cat((times, fouriered), dim=-1)
|
| 40 |
+
return fouriered
|
| 41 |
+
|
| 42 |
+
class DurationEmbedder(nn.Module):
|
| 43 |
+
"""
|
| 44 |
+
A simple linear projection model to map numbers to a latent space.
|
| 45 |
+
|
| 46 |
+
Code is adapted from
|
| 47 |
+
https://github.com/Stability-AI/stable-audio-tools
|
| 48 |
+
|
| 49 |
+
Args:
|
| 50 |
+
number_embedding_dim (`int`):
|
| 51 |
+
Dimensionality of the number embeddings.
|
| 52 |
+
min_value (`int`):
|
| 53 |
+
The minimum value of the seconds number conditioning modules.
|
| 54 |
+
max_value (`int`):
|
| 55 |
+
The maximum value of the seconds number conditioning modules
|
| 56 |
+
internal_dim (`int`):
|
| 57 |
+
Dimensionality of the intermediate number hidden states.
|
| 58 |
+
"""
|
| 59 |
+
|
| 60 |
+
def __init__(
|
| 61 |
+
self,
|
| 62 |
+
number_embedding_dim,
|
| 63 |
+
min_value,
|
| 64 |
+
max_value,
|
| 65 |
+
internal_dim: Optional[int] = 256,
|
| 66 |
+
):
|
| 67 |
+
super().__init__()
|
| 68 |
+
self.time_positional_embedding = nn.Sequential(
|
| 69 |
+
StableAudioPositionalEmbedding(internal_dim),
|
| 70 |
+
nn.Linear(in_features=internal_dim + 1, out_features=number_embedding_dim),
|
| 71 |
+
)
|
| 72 |
+
|
| 73 |
+
self.number_embedding_dim = number_embedding_dim
|
| 74 |
+
self.min_value = min_value
|
| 75 |
+
self.max_value = max_value
|
| 76 |
+
self.dtype = torch.float32
|
| 77 |
+
|
| 78 |
+
def forward(
|
| 79 |
+
self,
|
| 80 |
+
floats: torch.Tensor,
|
| 81 |
+
):
|
| 82 |
+
floats = floats.clamp(self.min_value, self.max_value)
|
| 83 |
+
|
| 84 |
+
normalized_floats = (floats - self.min_value) / (self.max_value - self.min_value)
|
| 85 |
+
|
| 86 |
+
# Cast floats to same type as embedder
|
| 87 |
+
embedder_dtype = next(self.time_positional_embedding.parameters()).dtype
|
| 88 |
+
normalized_floats = normalized_floats.to(embedder_dtype)
|
| 89 |
+
|
| 90 |
+
embedding = self.time_positional_embedding(normalized_floats)
|
| 91 |
+
float_embeds = embedding.view(-1, 1, self.number_embedding_dim)
|
| 92 |
+
|
| 93 |
+
return float_embeds
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
def retrieve_timesteps(
|
| 97 |
+
scheduler,
|
| 98 |
+
num_inference_steps: Optional[int] = None,
|
| 99 |
+
device: Optional[Union[str, torch.device]] = None,
|
| 100 |
+
timesteps: Optional[List[int]] = None,
|
| 101 |
+
sigmas: Optional[List[float]] = None,
|
| 102 |
+
**kwargs,
|
| 103 |
+
):
|
| 104 |
+
|
| 105 |
+
if timesteps is not None and sigmas is not None:
|
| 106 |
+
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
| 107 |
+
if timesteps is not None:
|
| 108 |
+
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
| 109 |
+
if not accepts_timesteps:
|
| 110 |
+
raise ValueError(
|
| 111 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
| 112 |
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
| 113 |
+
)
|
| 114 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
| 115 |
+
timesteps = scheduler.timesteps
|
| 116 |
+
num_inference_steps = len(timesteps)
|
| 117 |
+
elif sigmas is not None:
|
| 118 |
+
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
| 119 |
+
if not accept_sigmas:
|
| 120 |
+
raise ValueError(
|
| 121 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
| 122 |
+
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
| 123 |
+
)
|
| 124 |
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
| 125 |
+
timesteps = scheduler.timesteps
|
| 126 |
+
num_inference_steps = len(timesteps)
|
| 127 |
+
else:
|
| 128 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
| 129 |
+
timesteps = scheduler.timesteps
|
| 130 |
+
return timesteps, num_inference_steps
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
class TangoFlux(nn.Module):
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
def __init__(self,config,initialize_reference_model=False):
|
| 142 |
+
|
| 143 |
+
super().__init__()
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
self.num_layers = config.get('num_layers', 6)
|
| 148 |
+
self.num_single_layers = config.get('num_single_layers', 18)
|
| 149 |
+
self.in_channels = config.get('in_channels', 64)
|
| 150 |
+
self.attention_head_dim = config.get('attention_head_dim', 128)
|
| 151 |
+
self.joint_attention_dim = config.get('joint_attention_dim', 1024)
|
| 152 |
+
self.num_attention_heads = config.get('num_attention_heads', 8)
|
| 153 |
+
self.audio_seq_len = config.get('audio_seq_len', 645)
|
| 154 |
+
self.max_duration = config.get('max_duration', 30)
|
| 155 |
+
self.uncondition = config.get('uncondition', False)
|
| 156 |
+
self.text_encoder_name = config.get('text_encoder_name', "google/flan-t5-large")
|
| 157 |
+
|
| 158 |
+
self.noise_scheduler = FlowMatchEulerDiscreteScheduler(num_train_timesteps=1000)
|
| 159 |
+
self.noise_scheduler_copy = copy.deepcopy(self.noise_scheduler)
|
| 160 |
+
self.max_text_seq_len = 64
|
| 161 |
+
self.text_encoder = T5EncoderModel.from_pretrained(self.text_encoder_name)
|
| 162 |
+
self.tokenizer = T5TokenizerFast.from_pretrained(self.text_encoder_name)
|
| 163 |
+
self.text_embedding_dim = self.text_encoder.config.d_model
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
self.fc = nn.Sequential(nn.Linear(self.text_embedding_dim,self.joint_attention_dim),nn.ReLU())
|
| 167 |
+
self.duration_emebdder = DurationEmbedder(self.text_embedding_dim,min_value=0,max_value=self.max_duration)
|
| 168 |
+
|
| 169 |
+
self.transformer = FluxTransformer2DModel(
|
| 170 |
+
in_channels=self.in_channels,
|
| 171 |
+
num_layers=self.num_layers,
|
| 172 |
+
num_single_layers=self.num_single_layers,
|
| 173 |
+
attention_head_dim=self.attention_head_dim,
|
| 174 |
+
num_attention_heads=self.num_attention_heads,
|
| 175 |
+
joint_attention_dim=self.joint_attention_dim,
|
| 176 |
+
pooled_projection_dim=self.text_embedding_dim,
|
| 177 |
+
guidance_embeds=False)
|
| 178 |
+
|
| 179 |
+
self.beta_dpo = 2000 ## this is used for dpo training
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
def get_sigmas(self,timesteps, n_dim=3, dtype=torch.float32):
|
| 187 |
+
device = self.text_encoder.device
|
| 188 |
+
sigmas = self.noise_scheduler_copy.sigmas.to(device=device, dtype=dtype)
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
schedule_timesteps = self.noise_scheduler_copy.timesteps.to(device)
|
| 192 |
+
timesteps = timesteps.to(device)
|
| 193 |
+
step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps]
|
| 194 |
+
|
| 195 |
+
sigma = sigmas[step_indices].flatten()
|
| 196 |
+
while len(sigma.shape) < n_dim:
|
| 197 |
+
sigma = sigma.unsqueeze(-1)
|
| 198 |
+
return sigma
|
| 199 |
+
|
| 200 |
+
|
| 201 |
+
|
| 202 |
+
def encode_text_classifier_free(self, prompt: List[str], num_samples_per_prompt=1):
|
| 203 |
+
device = self.text_encoder.device
|
| 204 |
+
batch = self.tokenizer(
|
| 205 |
+
prompt, max_length=self.tokenizer.model_max_length, padding=True, truncation=True, return_tensors="pt"
|
| 206 |
+
)
|
| 207 |
+
input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(device)
|
| 208 |
+
|
| 209 |
+
with torch.no_grad():
|
| 210 |
+
prompt_embeds = self.text_encoder(
|
| 211 |
+
input_ids=input_ids, attention_mask=attention_mask
|
| 212 |
+
)[0]
|
| 213 |
+
|
| 214 |
+
prompt_embeds = prompt_embeds.repeat_interleave(num_samples_per_prompt, 0)
|
| 215 |
+
attention_mask = attention_mask.repeat_interleave(num_samples_per_prompt, 0)
|
| 216 |
+
|
| 217 |
+
# get unconditional embeddings for classifier free guidance
|
| 218 |
+
uncond_tokens = [""]
|
| 219 |
+
|
| 220 |
+
max_length = prompt_embeds.shape[1]
|
| 221 |
+
uncond_batch = self.tokenizer(
|
| 222 |
+
uncond_tokens, max_length=max_length, padding='max_length', truncation=True, return_tensors="pt",
|
| 223 |
+
)
|
| 224 |
+
uncond_input_ids = uncond_batch.input_ids.to(device)
|
| 225 |
+
uncond_attention_mask = uncond_batch.attention_mask.to(device)
|
| 226 |
+
|
| 227 |
+
with torch.no_grad():
|
| 228 |
+
negative_prompt_embeds = self.text_encoder(
|
| 229 |
+
input_ids=uncond_input_ids, attention_mask=uncond_attention_mask
|
| 230 |
+
)[0]
|
| 231 |
+
|
| 232 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat_interleave(num_samples_per_prompt, 0)
|
| 233 |
+
uncond_attention_mask = uncond_attention_mask.repeat_interleave(num_samples_per_prompt, 0)
|
| 234 |
+
|
| 235 |
+
# For classifier free guidance, we need to do two forward passes.
|
| 236 |
+
# We concatenate the unconditional and text embeddings into a single batch to avoid doing two forward passes
|
| 237 |
+
|
| 238 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
| 239 |
+
prompt_mask = torch.cat([uncond_attention_mask, attention_mask])
|
| 240 |
+
boolean_prompt_mask = (prompt_mask == 1).to(device)
|
| 241 |
+
|
| 242 |
+
return prompt_embeds, boolean_prompt_mask
|
| 243 |
+
|
| 244 |
+
@torch.no_grad()
|
| 245 |
+
def encode_text(self, prompt):
|
| 246 |
+
device = self.text_encoder.device
|
| 247 |
+
batch = self.tokenizer(
|
| 248 |
+
prompt, max_length=self.max_text_seq_len, padding=True, truncation=True, return_tensors="pt")
|
| 249 |
+
input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(device)
|
| 250 |
+
|
| 251 |
+
|
| 252 |
+
|
| 253 |
+
encoder_hidden_states = self.text_encoder(
|
| 254 |
+
input_ids=input_ids, attention_mask=attention_mask)[0]
|
| 255 |
+
|
| 256 |
+
boolean_encoder_mask = (attention_mask == 1).to(device)
|
| 257 |
+
|
| 258 |
+
return encoder_hidden_states, boolean_encoder_mask
|
| 259 |
+
|
| 260 |
+
|
| 261 |
+
def encode_duration(self,duration):
|
| 262 |
+
return self.duration_emebdder(duration)
|
| 263 |
+
|
| 264 |
+
|
| 265 |
+
|
| 266 |
+
@torch.no_grad()
|
| 267 |
+
def inference_flow(self, prompt,
|
| 268 |
+
num_inference_steps=50,
|
| 269 |
+
timesteps=None,
|
| 270 |
+
guidance_scale=3,
|
| 271 |
+
duration=10,
|
| 272 |
+
disable_progress=False,
|
| 273 |
+
num_samples_per_prompt=1):
|
| 274 |
+
|
| 275 |
+
'''Only tested for single inference. Haven't test for batch inference'''
|
| 276 |
+
|
| 277 |
+
bsz = num_samples_per_prompt
|
| 278 |
+
device = self.transformer.device
|
| 279 |
+
scheduler = self.noise_scheduler
|
| 280 |
+
|
| 281 |
+
if not isinstance(prompt,list):
|
| 282 |
+
prompt = [prompt]
|
| 283 |
+
if not isinstance(duration,torch.Tensor):
|
| 284 |
+
duration = torch.tensor([duration],device=device)
|
| 285 |
+
classifier_free_guidance = guidance_scale > 1.0
|
| 286 |
+
duration_hidden_states = self.encode_duration(duration)
|
| 287 |
+
if classifier_free_guidance:
|
| 288 |
+
bsz = 2 * num_samples_per_prompt
|
| 289 |
+
|
| 290 |
+
encoder_hidden_states, boolean_encoder_mask = self.encode_text_classifier_free(prompt, num_samples_per_prompt=num_samples_per_prompt)
|
| 291 |
+
duration_hidden_states = duration_hidden_states.repeat(bsz,1,1)
|
| 292 |
+
|
| 293 |
+
|
| 294 |
+
else:
|
| 295 |
+
|
| 296 |
+
encoder_hidden_states, boolean_encoder_mask = self.encode_text(prompt,num_samples_per_prompt=num_samples_per_prompt)
|
| 297 |
+
|
| 298 |
+
mask_expanded = boolean_encoder_mask.unsqueeze(-1).expand_as(encoder_hidden_states)
|
| 299 |
+
masked_data = torch.where(mask_expanded, encoder_hidden_states, torch.tensor(float('nan')))
|
| 300 |
+
|
| 301 |
+
pooled = torch.nanmean(masked_data, dim=1)
|
| 302 |
+
pooled_projection = self.fc(pooled)
|
| 303 |
+
|
| 304 |
+
encoder_hidden_states = torch.cat([encoder_hidden_states,duration_hidden_states],dim=1) ## (bs,seq_len,dim)
|
| 305 |
+
|
| 306 |
+
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
|
| 307 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
| 308 |
+
scheduler,
|
| 309 |
+
num_inference_steps,
|
| 310 |
+
device,
|
| 311 |
+
timesteps,
|
| 312 |
+
sigmas
|
| 313 |
+
)
|
| 314 |
+
|
| 315 |
+
latents = torch.randn(num_samples_per_prompt,self.audio_seq_len,64)
|
| 316 |
+
weight_dtype = latents.dtype
|
| 317 |
+
|
| 318 |
+
progress_bar = tqdm(range(num_inference_steps), disable=disable_progress)
|
| 319 |
+
|
| 320 |
+
txt_ids = torch.zeros(bsz,encoder_hidden_states.shape[1],3).to(device)
|
| 321 |
+
audio_ids = torch.arange(self.audio_seq_len).unsqueeze(0).unsqueeze(-1).repeat(bsz,1,3).to(device)
|
| 322 |
+
|
| 323 |
+
|
| 324 |
+
timesteps = timesteps.to(device)
|
| 325 |
+
latents = latents.to(device)
|
| 326 |
+
encoder_hidden_states = encoder_hidden_states.to(device)
|
| 327 |
+
|
| 328 |
+
|
| 329 |
+
for i, t in enumerate(timesteps):
|
| 330 |
+
|
| 331 |
+
latents_input = torch.cat([latents] * 2) if classifier_free_guidance else latents
|
| 332 |
+
|
| 333 |
+
|
| 334 |
+
|
| 335 |
+
noise_pred = self.transformer(
|
| 336 |
+
hidden_states=latents_input,
|
| 337 |
+
# YiYi notes: divide it by 1000 for now because we scale it by 1000 in the transforme rmodel (we should not keep it but I want to keep the inputs same for the model for testing)
|
| 338 |
+
timestep=torch.tensor([t/1000],device=device),
|
| 339 |
+
guidance = None,
|
| 340 |
+
pooled_projections=pooled_projection,
|
| 341 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 342 |
+
txt_ids=txt_ids,
|
| 343 |
+
img_ids=audio_ids,
|
| 344 |
+
return_dict=False,
|
| 345 |
+
)[0]
|
| 346 |
+
|
| 347 |
+
if classifier_free_guidance:
|
| 348 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
| 349 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
| 350 |
+
|
| 351 |
+
|
| 352 |
+
latents = scheduler.step(noise_pred, t, latents).prev_sample
|
| 353 |
+
|
| 354 |
+
|
| 355 |
+
return latents
|
| 356 |
+
|
| 357 |
+
def forward(self,
|
| 358 |
+
latents,
|
| 359 |
+
prompt,
|
| 360 |
+
duration=torch.tensor([10]),
|
| 361 |
+
sft=True
|
| 362 |
+
):
|
| 363 |
+
|
| 364 |
+
|
| 365 |
+
device = latents.device
|
| 366 |
+
audio_seq_length = self.audio_seq_len
|
| 367 |
+
bsz = latents.shape[0]
|
| 368 |
+
|
| 369 |
+
|
| 370 |
+
|
| 371 |
+
encoder_hidden_states, boolean_encoder_mask = self.encode_text(prompt)
|
| 372 |
+
duration_hidden_states = self.encode_duration(duration)
|
| 373 |
+
|
| 374 |
+
|
| 375 |
+
mask_expanded = boolean_encoder_mask.unsqueeze(-1).expand_as(encoder_hidden_states)
|
| 376 |
+
masked_data = torch.where(mask_expanded, encoder_hidden_states, torch.tensor(float('nan')))
|
| 377 |
+
pooled = torch.nanmean(masked_data, dim=1)
|
| 378 |
+
pooled_projection = self.fc(pooled)
|
| 379 |
+
|
| 380 |
+
## Add duration hidden states to encoder hidden states
|
| 381 |
+
encoder_hidden_states = torch.cat([encoder_hidden_states,duration_hidden_states],dim=1) ## (bs,seq_len,dim)
|
| 382 |
+
|
| 383 |
+
txt_ids = torch.zeros(bsz,encoder_hidden_states.shape[1],3).to(device)
|
| 384 |
+
audio_ids = torch.arange(audio_seq_length).unsqueeze(0).unsqueeze(-1).repeat(bsz,1,3).to(device)
|
| 385 |
+
|
| 386 |
+
if sft:
|
| 387 |
+
|
| 388 |
+
if self.uncondition:
|
| 389 |
+
mask_indices = [k for k in range(len(prompt)) if random.random() < 0.1]
|
| 390 |
+
if len(mask_indices) > 0:
|
| 391 |
+
encoder_hidden_states[mask_indices] = 0
|
| 392 |
+
|
| 393 |
+
|
| 394 |
+
noise = torch.randn_like(latents)
|
| 395 |
+
|
| 396 |
+
|
| 397 |
+
u = compute_density_for_timestep_sampling(
|
| 398 |
+
weighting_scheme='logit_normal',
|
| 399 |
+
batch_size=bsz,
|
| 400 |
+
logit_mean=0,
|
| 401 |
+
logit_std=1,
|
| 402 |
+
mode_scale=None,
|
| 403 |
+
)
|
| 404 |
+
|
| 405 |
+
|
| 406 |
+
indices = (u * self.noise_scheduler_copy.config.num_train_timesteps).long()
|
| 407 |
+
timesteps = self.noise_scheduler_copy.timesteps[indices].to(device=latents.device)
|
| 408 |
+
sigmas = self.get_sigmas(timesteps, n_dim=latents.ndim, dtype=latents.dtype)
|
| 409 |
+
|
| 410 |
+
noisy_model_input = (1.0 - sigmas) * latents + sigmas * noise
|
| 411 |
+
|
| 412 |
+
|
| 413 |
+
|
| 414 |
+
model_pred = self.transformer(
|
| 415 |
+
hidden_states=noisy_model_input,
|
| 416 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 417 |
+
pooled_projections=pooled_projection,
|
| 418 |
+
img_ids=audio_ids,
|
| 419 |
+
txt_ids=txt_ids,
|
| 420 |
+
guidance=None,
|
| 421 |
+
# YiYi notes: divide it by 1000 for now because we scale it by 1000 in the transforme rmodel (we should not keep it but I want to keep the inputs same for the model for testing)
|
| 422 |
+
timestep=timesteps/1000,
|
| 423 |
+
return_dict=False)[0]
|
| 424 |
+
|
| 425 |
+
|
| 426 |
+
|
| 427 |
+
target = noise - latents
|
| 428 |
+
loss = torch.mean(
|
| 429 |
+
( (model_pred.float() - target.float()) ** 2).reshape(target.shape[0], -1),
|
| 430 |
+
1,
|
| 431 |
+
)
|
| 432 |
+
loss = loss.mean()
|
| 433 |
+
raw_model_loss, raw_ref_loss,implicit_acc = 0,0,0 ## default this to 0 if doing sft
|
| 434 |
+
|
| 435 |
+
else:
|
| 436 |
+
encoder_hidden_states = encoder_hidden_states.repeat(2, 1, 1)
|
| 437 |
+
pooled_projection = pooled_projection.repeat(2,1)
|
| 438 |
+
noise = torch.randn_like(latents).chunk(2)[0].repeat(2, 1, 1) ## Have to sample same noise for preferred and rejected
|
| 439 |
+
u = compute_density_for_timestep_sampling(
|
| 440 |
+
weighting_scheme='logit_normal',
|
| 441 |
+
batch_size=bsz//2,
|
| 442 |
+
logit_mean=0,
|
| 443 |
+
logit_std=1,
|
| 444 |
+
mode_scale=None,
|
| 445 |
+
)
|
| 446 |
+
|
| 447 |
+
|
| 448 |
+
indices = (u * self.noise_scheduler_copy.config.num_train_timesteps).long()
|
| 449 |
+
timesteps = self.noise_scheduler_copy.timesteps[indices].to(device=latents.device)
|
| 450 |
+
timesteps = timesteps.repeat(2)
|
| 451 |
+
sigmas = self.get_sigmas(timesteps, n_dim=latents.ndim, dtype=latents.dtype)
|
| 452 |
+
|
| 453 |
+
noisy_model_input = (1.0 - sigmas) * latents + sigmas * noise
|
| 454 |
+
|
| 455 |
+
model_pred = self.transformer(
|
| 456 |
+
hidden_states=noisy_model_input,
|
| 457 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 458 |
+
pooled_projections=pooled_projection,
|
| 459 |
+
img_ids=audio_ids,
|
| 460 |
+
txt_ids=txt_ids,
|
| 461 |
+
guidance=None,
|
| 462 |
+
# YiYi notes: divide it by 1000 for now because we scale it by 1000 in the transforme rmodel (we should not keep it but I want to keep the inputs same for the model for testing)
|
| 463 |
+
timestep=timesteps/1000,
|
| 464 |
+
return_dict=False)[0]
|
| 465 |
+
target = noise - latents
|
| 466 |
+
|
| 467 |
+
model_losses = F.mse_loss(model_pred.float(), target.float(), reduction="none")
|
| 468 |
+
model_losses = model_losses.mean(dim=list(range(1, len(model_losses.shape))))
|
| 469 |
+
model_losses_w, model_losses_l = model_losses.chunk(2)
|
| 470 |
+
model_diff = model_losses_w - model_losses_l
|
| 471 |
+
raw_model_loss = 0.5 * (model_losses_w.mean() + model_losses_l.mean())
|
| 472 |
+
|
| 473 |
+
|
| 474 |
+
with torch.no_grad():
|
| 475 |
+
ref_preds = self.ref_transformer(
|
| 476 |
+
hidden_states=noisy_model_input,
|
| 477 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 478 |
+
pooled_projections=pooled_projection,
|
| 479 |
+
img_ids=audio_ids,
|
| 480 |
+
txt_ids=txt_ids,
|
| 481 |
+
guidance=None,
|
| 482 |
+
timestep=timesteps/1000,
|
| 483 |
+
return_dict=False)[0]
|
| 484 |
+
|
| 485 |
+
|
| 486 |
+
ref_loss = F.mse_loss(ref_preds.float(), target.float(), reduction="none")
|
| 487 |
+
ref_loss = ref_loss.mean(dim=list(range(1, len(ref_loss.shape))))
|
| 488 |
+
|
| 489 |
+
ref_losses_w, ref_losses_l = ref_loss.chunk(2)
|
| 490 |
+
ref_diff = ref_losses_w - ref_losses_l
|
| 491 |
+
raw_ref_loss = ref_loss.mean()
|
| 492 |
+
|
| 493 |
+
|
| 494 |
+
|
| 495 |
+
|
| 496 |
+
|
| 497 |
+
|
| 498 |
+
|
| 499 |
+
|
| 500 |
+
|
| 501 |
+
scale_term = -0.5 * self.beta_dpo
|
| 502 |
+
inside_term = scale_term * (model_diff - ref_diff)
|
| 503 |
+
implicit_acc = (scale_term * (model_diff - ref_diff) > 0).sum().float() / inside_term.size(0)
|
| 504 |
+
loss = -1 * F.logsigmoid(inside_term).mean() + model_losses_w.mean()
|
| 505 |
+
|
| 506 |
+
## raw_model_loss, raw_ref_loss, implicit_acc is used to help to analyze dpo behaviour.
|
| 507 |
+
return loss, raw_model_loss, raw_ref_loss, implicit_acc
|
| 508 |
+
|
| 509 |
+
|
| 510 |
+
|