Text-to-Audio
Inference Endpoints
hungchiayu commited on
Commit
881a418
·
verified ·
1 Parent(s): de28e55

Create model.py

Browse files
Files changed (1) hide show
  1. model.py +510 -0
model.py ADDED
@@ -0,0 +1,510 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import T5EncoderModel,T5TokenizerFast
2
+ import torch
3
+ from diffusers import FluxTransformer2DModel
4
+ from torch import nn
5
+
6
+ from typing import List
7
+ from diffusers import FlowMatchEulerDiscreteScheduler
8
+ from diffusers.training_utils import compute_density_for_timestep_sampling
9
+ import copy
10
+ import torch.nn.functional as F
11
+ import numpy as np
12
+ from tqdm import tqdm
13
+
14
+ from typing import Optional,Union,List
15
+ from datasets import load_dataset, Audio
16
+ from math import pi
17
+ import inspect
18
+ import yaml
19
+
20
+
21
+
22
+ class StableAudioPositionalEmbedding(nn.Module):
23
+ """Used for continuous time
24
+
25
+ Adapted from stable audio open.
26
+
27
+ """
28
+
29
+ def __init__(self, dim: int):
30
+ super().__init__()
31
+ assert (dim % 2) == 0
32
+ half_dim = dim // 2
33
+ self.weights = nn.Parameter(torch.randn(half_dim))
34
+
35
+ def forward(self, times: torch.Tensor) -> torch.Tensor:
36
+ times = times[..., None]
37
+ freqs = times * self.weights[None] * 2 * pi
38
+ fouriered = torch.cat((freqs.sin(), freqs.cos()), dim=-1)
39
+ fouriered = torch.cat((times, fouriered), dim=-1)
40
+ return fouriered
41
+
42
+ class DurationEmbedder(nn.Module):
43
+ """
44
+ A simple linear projection model to map numbers to a latent space.
45
+
46
+ Code is adapted from
47
+ https://github.com/Stability-AI/stable-audio-tools
48
+
49
+ Args:
50
+ number_embedding_dim (`int`):
51
+ Dimensionality of the number embeddings.
52
+ min_value (`int`):
53
+ The minimum value of the seconds number conditioning modules.
54
+ max_value (`int`):
55
+ The maximum value of the seconds number conditioning modules
56
+ internal_dim (`int`):
57
+ Dimensionality of the intermediate number hidden states.
58
+ """
59
+
60
+ def __init__(
61
+ self,
62
+ number_embedding_dim,
63
+ min_value,
64
+ max_value,
65
+ internal_dim: Optional[int] = 256,
66
+ ):
67
+ super().__init__()
68
+ self.time_positional_embedding = nn.Sequential(
69
+ StableAudioPositionalEmbedding(internal_dim),
70
+ nn.Linear(in_features=internal_dim + 1, out_features=number_embedding_dim),
71
+ )
72
+
73
+ self.number_embedding_dim = number_embedding_dim
74
+ self.min_value = min_value
75
+ self.max_value = max_value
76
+ self.dtype = torch.float32
77
+
78
+ def forward(
79
+ self,
80
+ floats: torch.Tensor,
81
+ ):
82
+ floats = floats.clamp(self.min_value, self.max_value)
83
+
84
+ normalized_floats = (floats - self.min_value) / (self.max_value - self.min_value)
85
+
86
+ # Cast floats to same type as embedder
87
+ embedder_dtype = next(self.time_positional_embedding.parameters()).dtype
88
+ normalized_floats = normalized_floats.to(embedder_dtype)
89
+
90
+ embedding = self.time_positional_embedding(normalized_floats)
91
+ float_embeds = embedding.view(-1, 1, self.number_embedding_dim)
92
+
93
+ return float_embeds
94
+
95
+
96
+ def retrieve_timesteps(
97
+ scheduler,
98
+ num_inference_steps: Optional[int] = None,
99
+ device: Optional[Union[str, torch.device]] = None,
100
+ timesteps: Optional[List[int]] = None,
101
+ sigmas: Optional[List[float]] = None,
102
+ **kwargs,
103
+ ):
104
+
105
+ if timesteps is not None and sigmas is not None:
106
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
107
+ if timesteps is not None:
108
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
109
+ if not accepts_timesteps:
110
+ raise ValueError(
111
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
112
+ f" timestep schedules. Please check whether you are using the correct scheduler."
113
+ )
114
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
115
+ timesteps = scheduler.timesteps
116
+ num_inference_steps = len(timesteps)
117
+ elif sigmas is not None:
118
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
119
+ if not accept_sigmas:
120
+ raise ValueError(
121
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
122
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
123
+ )
124
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
125
+ timesteps = scheduler.timesteps
126
+ num_inference_steps = len(timesteps)
127
+ else:
128
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
129
+ timesteps = scheduler.timesteps
130
+ return timesteps, num_inference_steps
131
+
132
+
133
+
134
+
135
+
136
+
137
+
138
+ class TangoFlux(nn.Module):
139
+
140
+
141
+ def __init__(self,config,initialize_reference_model=False):
142
+
143
+ super().__init__()
144
+
145
+
146
+
147
+ self.num_layers = config.get('num_layers', 6)
148
+ self.num_single_layers = config.get('num_single_layers', 18)
149
+ self.in_channels = config.get('in_channels', 64)
150
+ self.attention_head_dim = config.get('attention_head_dim', 128)
151
+ self.joint_attention_dim = config.get('joint_attention_dim', 1024)
152
+ self.num_attention_heads = config.get('num_attention_heads', 8)
153
+ self.audio_seq_len = config.get('audio_seq_len', 645)
154
+ self.max_duration = config.get('max_duration', 30)
155
+ self.uncondition = config.get('uncondition', False)
156
+ self.text_encoder_name = config.get('text_encoder_name', "google/flan-t5-large")
157
+
158
+ self.noise_scheduler = FlowMatchEulerDiscreteScheduler(num_train_timesteps=1000)
159
+ self.noise_scheduler_copy = copy.deepcopy(self.noise_scheduler)
160
+ self.max_text_seq_len = 64
161
+ self.text_encoder = T5EncoderModel.from_pretrained(self.text_encoder_name)
162
+ self.tokenizer = T5TokenizerFast.from_pretrained(self.text_encoder_name)
163
+ self.text_embedding_dim = self.text_encoder.config.d_model
164
+
165
+
166
+ self.fc = nn.Sequential(nn.Linear(self.text_embedding_dim,self.joint_attention_dim),nn.ReLU())
167
+ self.duration_emebdder = DurationEmbedder(self.text_embedding_dim,min_value=0,max_value=self.max_duration)
168
+
169
+ self.transformer = FluxTransformer2DModel(
170
+ in_channels=self.in_channels,
171
+ num_layers=self.num_layers,
172
+ num_single_layers=self.num_single_layers,
173
+ attention_head_dim=self.attention_head_dim,
174
+ num_attention_heads=self.num_attention_heads,
175
+ joint_attention_dim=self.joint_attention_dim,
176
+ pooled_projection_dim=self.text_embedding_dim,
177
+ guidance_embeds=False)
178
+
179
+ self.beta_dpo = 2000 ## this is used for dpo training
180
+
181
+
182
+
183
+
184
+
185
+
186
+ def get_sigmas(self,timesteps, n_dim=3, dtype=torch.float32):
187
+ device = self.text_encoder.device
188
+ sigmas = self.noise_scheduler_copy.sigmas.to(device=device, dtype=dtype)
189
+
190
+
191
+ schedule_timesteps = self.noise_scheduler_copy.timesteps.to(device)
192
+ timesteps = timesteps.to(device)
193
+ step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps]
194
+
195
+ sigma = sigmas[step_indices].flatten()
196
+ while len(sigma.shape) < n_dim:
197
+ sigma = sigma.unsqueeze(-1)
198
+ return sigma
199
+
200
+
201
+
202
+ def encode_text_classifier_free(self, prompt: List[str], num_samples_per_prompt=1):
203
+ device = self.text_encoder.device
204
+ batch = self.tokenizer(
205
+ prompt, max_length=self.tokenizer.model_max_length, padding=True, truncation=True, return_tensors="pt"
206
+ )
207
+ input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(device)
208
+
209
+ with torch.no_grad():
210
+ prompt_embeds = self.text_encoder(
211
+ input_ids=input_ids, attention_mask=attention_mask
212
+ )[0]
213
+
214
+ prompt_embeds = prompt_embeds.repeat_interleave(num_samples_per_prompt, 0)
215
+ attention_mask = attention_mask.repeat_interleave(num_samples_per_prompt, 0)
216
+
217
+ # get unconditional embeddings for classifier free guidance
218
+ uncond_tokens = [""]
219
+
220
+ max_length = prompt_embeds.shape[1]
221
+ uncond_batch = self.tokenizer(
222
+ uncond_tokens, max_length=max_length, padding='max_length', truncation=True, return_tensors="pt",
223
+ )
224
+ uncond_input_ids = uncond_batch.input_ids.to(device)
225
+ uncond_attention_mask = uncond_batch.attention_mask.to(device)
226
+
227
+ with torch.no_grad():
228
+ negative_prompt_embeds = self.text_encoder(
229
+ input_ids=uncond_input_ids, attention_mask=uncond_attention_mask
230
+ )[0]
231
+
232
+ negative_prompt_embeds = negative_prompt_embeds.repeat_interleave(num_samples_per_prompt, 0)
233
+ uncond_attention_mask = uncond_attention_mask.repeat_interleave(num_samples_per_prompt, 0)
234
+
235
+ # For classifier free guidance, we need to do two forward passes.
236
+ # We concatenate the unconditional and text embeddings into a single batch to avoid doing two forward passes
237
+
238
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
239
+ prompt_mask = torch.cat([uncond_attention_mask, attention_mask])
240
+ boolean_prompt_mask = (prompt_mask == 1).to(device)
241
+
242
+ return prompt_embeds, boolean_prompt_mask
243
+
244
+ @torch.no_grad()
245
+ def encode_text(self, prompt):
246
+ device = self.text_encoder.device
247
+ batch = self.tokenizer(
248
+ prompt, max_length=self.max_text_seq_len, padding=True, truncation=True, return_tensors="pt")
249
+ input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(device)
250
+
251
+
252
+
253
+ encoder_hidden_states = self.text_encoder(
254
+ input_ids=input_ids, attention_mask=attention_mask)[0]
255
+
256
+ boolean_encoder_mask = (attention_mask == 1).to(device)
257
+
258
+ return encoder_hidden_states, boolean_encoder_mask
259
+
260
+
261
+ def encode_duration(self,duration):
262
+ return self.duration_emebdder(duration)
263
+
264
+
265
+
266
+ @torch.no_grad()
267
+ def inference_flow(self, prompt,
268
+ num_inference_steps=50,
269
+ timesteps=None,
270
+ guidance_scale=3,
271
+ duration=10,
272
+ disable_progress=False,
273
+ num_samples_per_prompt=1):
274
+
275
+ '''Only tested for single inference. Haven't test for batch inference'''
276
+
277
+ bsz = num_samples_per_prompt
278
+ device = self.transformer.device
279
+ scheduler = self.noise_scheduler
280
+
281
+ if not isinstance(prompt,list):
282
+ prompt = [prompt]
283
+ if not isinstance(duration,torch.Tensor):
284
+ duration = torch.tensor([duration],device=device)
285
+ classifier_free_guidance = guidance_scale > 1.0
286
+ duration_hidden_states = self.encode_duration(duration)
287
+ if classifier_free_guidance:
288
+ bsz = 2 * num_samples_per_prompt
289
+
290
+ encoder_hidden_states, boolean_encoder_mask = self.encode_text_classifier_free(prompt, num_samples_per_prompt=num_samples_per_prompt)
291
+ duration_hidden_states = duration_hidden_states.repeat(bsz,1,1)
292
+
293
+
294
+ else:
295
+
296
+ encoder_hidden_states, boolean_encoder_mask = self.encode_text(prompt,num_samples_per_prompt=num_samples_per_prompt)
297
+
298
+ mask_expanded = boolean_encoder_mask.unsqueeze(-1).expand_as(encoder_hidden_states)
299
+ masked_data = torch.where(mask_expanded, encoder_hidden_states, torch.tensor(float('nan')))
300
+
301
+ pooled = torch.nanmean(masked_data, dim=1)
302
+ pooled_projection = self.fc(pooled)
303
+
304
+ encoder_hidden_states = torch.cat([encoder_hidden_states,duration_hidden_states],dim=1) ## (bs,seq_len,dim)
305
+
306
+ sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
307
+ timesteps, num_inference_steps = retrieve_timesteps(
308
+ scheduler,
309
+ num_inference_steps,
310
+ device,
311
+ timesteps,
312
+ sigmas
313
+ )
314
+
315
+ latents = torch.randn(num_samples_per_prompt,self.audio_seq_len,64)
316
+ weight_dtype = latents.dtype
317
+
318
+ progress_bar = tqdm(range(num_inference_steps), disable=disable_progress)
319
+
320
+ txt_ids = torch.zeros(bsz,encoder_hidden_states.shape[1],3).to(device)
321
+ audio_ids = torch.arange(self.audio_seq_len).unsqueeze(0).unsqueeze(-1).repeat(bsz,1,3).to(device)
322
+
323
+
324
+ timesteps = timesteps.to(device)
325
+ latents = latents.to(device)
326
+ encoder_hidden_states = encoder_hidden_states.to(device)
327
+
328
+
329
+ for i, t in enumerate(timesteps):
330
+
331
+ latents_input = torch.cat([latents] * 2) if classifier_free_guidance else latents
332
+
333
+
334
+
335
+ noise_pred = self.transformer(
336
+ hidden_states=latents_input,
337
+ # YiYi notes: divide it by 1000 for now because we scale it by 1000 in the transforme rmodel (we should not keep it but I want to keep the inputs same for the model for testing)
338
+ timestep=torch.tensor([t/1000],device=device),
339
+ guidance = None,
340
+ pooled_projections=pooled_projection,
341
+ encoder_hidden_states=encoder_hidden_states,
342
+ txt_ids=txt_ids,
343
+ img_ids=audio_ids,
344
+ return_dict=False,
345
+ )[0]
346
+
347
+ if classifier_free_guidance:
348
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
349
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
350
+
351
+
352
+ latents = scheduler.step(noise_pred, t, latents).prev_sample
353
+
354
+
355
+ return latents
356
+
357
+ def forward(self,
358
+ latents,
359
+ prompt,
360
+ duration=torch.tensor([10]),
361
+ sft=True
362
+ ):
363
+
364
+
365
+ device = latents.device
366
+ audio_seq_length = self.audio_seq_len
367
+ bsz = latents.shape[0]
368
+
369
+
370
+
371
+ encoder_hidden_states, boolean_encoder_mask = self.encode_text(prompt)
372
+ duration_hidden_states = self.encode_duration(duration)
373
+
374
+
375
+ mask_expanded = boolean_encoder_mask.unsqueeze(-1).expand_as(encoder_hidden_states)
376
+ masked_data = torch.where(mask_expanded, encoder_hidden_states, torch.tensor(float('nan')))
377
+ pooled = torch.nanmean(masked_data, dim=1)
378
+ pooled_projection = self.fc(pooled)
379
+
380
+ ## Add duration hidden states to encoder hidden states
381
+ encoder_hidden_states = torch.cat([encoder_hidden_states,duration_hidden_states],dim=1) ## (bs,seq_len,dim)
382
+
383
+ txt_ids = torch.zeros(bsz,encoder_hidden_states.shape[1],3).to(device)
384
+ audio_ids = torch.arange(audio_seq_length).unsqueeze(0).unsqueeze(-1).repeat(bsz,1,3).to(device)
385
+
386
+ if sft:
387
+
388
+ if self.uncondition:
389
+ mask_indices = [k for k in range(len(prompt)) if random.random() < 0.1]
390
+ if len(mask_indices) > 0:
391
+ encoder_hidden_states[mask_indices] = 0
392
+
393
+
394
+ noise = torch.randn_like(latents)
395
+
396
+
397
+ u = compute_density_for_timestep_sampling(
398
+ weighting_scheme='logit_normal',
399
+ batch_size=bsz,
400
+ logit_mean=0,
401
+ logit_std=1,
402
+ mode_scale=None,
403
+ )
404
+
405
+
406
+ indices = (u * self.noise_scheduler_copy.config.num_train_timesteps).long()
407
+ timesteps = self.noise_scheduler_copy.timesteps[indices].to(device=latents.device)
408
+ sigmas = self.get_sigmas(timesteps, n_dim=latents.ndim, dtype=latents.dtype)
409
+
410
+ noisy_model_input = (1.0 - sigmas) * latents + sigmas * noise
411
+
412
+
413
+
414
+ model_pred = self.transformer(
415
+ hidden_states=noisy_model_input,
416
+ encoder_hidden_states=encoder_hidden_states,
417
+ pooled_projections=pooled_projection,
418
+ img_ids=audio_ids,
419
+ txt_ids=txt_ids,
420
+ guidance=None,
421
+ # YiYi notes: divide it by 1000 for now because we scale it by 1000 in the transforme rmodel (we should not keep it but I want to keep the inputs same for the model for testing)
422
+ timestep=timesteps/1000,
423
+ return_dict=False)[0]
424
+
425
+
426
+
427
+ target = noise - latents
428
+ loss = torch.mean(
429
+ ( (model_pred.float() - target.float()) ** 2).reshape(target.shape[0], -1),
430
+ 1,
431
+ )
432
+ loss = loss.mean()
433
+ raw_model_loss, raw_ref_loss,implicit_acc = 0,0,0 ## default this to 0 if doing sft
434
+
435
+ else:
436
+ encoder_hidden_states = encoder_hidden_states.repeat(2, 1, 1)
437
+ pooled_projection = pooled_projection.repeat(2,1)
438
+ noise = torch.randn_like(latents).chunk(2)[0].repeat(2, 1, 1) ## Have to sample same noise for preferred and rejected
439
+ u = compute_density_for_timestep_sampling(
440
+ weighting_scheme='logit_normal',
441
+ batch_size=bsz//2,
442
+ logit_mean=0,
443
+ logit_std=1,
444
+ mode_scale=None,
445
+ )
446
+
447
+
448
+ indices = (u * self.noise_scheduler_copy.config.num_train_timesteps).long()
449
+ timesteps = self.noise_scheduler_copy.timesteps[indices].to(device=latents.device)
450
+ timesteps = timesteps.repeat(2)
451
+ sigmas = self.get_sigmas(timesteps, n_dim=latents.ndim, dtype=latents.dtype)
452
+
453
+ noisy_model_input = (1.0 - sigmas) * latents + sigmas * noise
454
+
455
+ model_pred = self.transformer(
456
+ hidden_states=noisy_model_input,
457
+ encoder_hidden_states=encoder_hidden_states,
458
+ pooled_projections=pooled_projection,
459
+ img_ids=audio_ids,
460
+ txt_ids=txt_ids,
461
+ guidance=None,
462
+ # YiYi notes: divide it by 1000 for now because we scale it by 1000 in the transforme rmodel (we should not keep it but I want to keep the inputs same for the model for testing)
463
+ timestep=timesteps/1000,
464
+ return_dict=False)[0]
465
+ target = noise - latents
466
+
467
+ model_losses = F.mse_loss(model_pred.float(), target.float(), reduction="none")
468
+ model_losses = model_losses.mean(dim=list(range(1, len(model_losses.shape))))
469
+ model_losses_w, model_losses_l = model_losses.chunk(2)
470
+ model_diff = model_losses_w - model_losses_l
471
+ raw_model_loss = 0.5 * (model_losses_w.mean() + model_losses_l.mean())
472
+
473
+
474
+ with torch.no_grad():
475
+ ref_preds = self.ref_transformer(
476
+ hidden_states=noisy_model_input,
477
+ encoder_hidden_states=encoder_hidden_states,
478
+ pooled_projections=pooled_projection,
479
+ img_ids=audio_ids,
480
+ txt_ids=txt_ids,
481
+ guidance=None,
482
+ timestep=timesteps/1000,
483
+ return_dict=False)[0]
484
+
485
+
486
+ ref_loss = F.mse_loss(ref_preds.float(), target.float(), reduction="none")
487
+ ref_loss = ref_loss.mean(dim=list(range(1, len(ref_loss.shape))))
488
+
489
+ ref_losses_w, ref_losses_l = ref_loss.chunk(2)
490
+ ref_diff = ref_losses_w - ref_losses_l
491
+ raw_ref_loss = ref_loss.mean()
492
+
493
+
494
+
495
+
496
+
497
+
498
+
499
+
500
+
501
+ scale_term = -0.5 * self.beta_dpo
502
+ inside_term = scale_term * (model_diff - ref_diff)
503
+ implicit_acc = (scale_term * (model_diff - ref_diff) > 0).sum().float() / inside_term.size(0)
504
+ loss = -1 * F.logsigmoid(inside_term).mean() + model_losses_w.mean()
505
+
506
+ ## raw_model_loss, raw_ref_loss, implicit_acc is used to help to analyze dpo behaviour.
507
+ return loss, raw_model_loss, raw_ref_loss, implicit_acc
508
+
509
+
510
+