File size: 4,348 Bytes
511d525
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02dffb0
 
 
511d525
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
615ece9
 
511d525
615ece9
 
 
 
 
 
 
 
511d525
fd6e43a
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
---
datasets:
- cvssp/WavCaps
cite: arxiv.org/abs/2412.21037
---

<h1 align="center"><br/>  
TangoFlux: Super Fast and Faithful Text to Audio Generation with Flow Matching and Clap-Ranked Preference Optimization 
<br/>
✨✨✨


</h1>

<div align="center">
  <img src="https://raw.githubusercontent.com/declare-lab/TangoFlux/refs/heads/main/assets/tf_teaser.png" alt="TangoFlux" width="1000" />

<br/>

<div style="display: flex; gap: 10px; align-items: center;">
  <a href="https://openreview.net/attachment?id=tpJPlFTyxd&name=pdf">
    <img src="https://img.shields.io/badge/Read_the_Paper-blue?link=https%3A%2F%2Fopenreview.net%2Fattachment%3Fid%3DtpJPlFTyxd%26name%3Dpdf" alt="arXiv">
  </a>
  <a href="https://huggingface.co/declare-lab/TangoFlux">
    <img src="https://img.shields.io/badge/TangoFlux-Huggingface-violet?logo=huggingface&link=https%3A%2F%2Fhuggingface.co%2Fdeclare-lab%2FTangoFlux" alt="Static Badge">
  </a>
  <a href="https://tangoflux.github.io/">
    <img src="https://img.shields.io/badge/Demos-declare--lab-brightred?style=flat" alt="Static Badge">
  </a>
  <a href="https://huggingface.co/spaces/declare-lab/TangoFlux">
    <img src="https://img.shields.io/badge/TangoFlux-Huggingface_Space-8A2BE2?logo=huggingface&link=https%3A%2F%2Fhuggingface.co%2Fspaces%2Fdeclare-lab%2FTangoFlux" alt="Static Badge">
  </a>
  <a href="https://huggingface.co/datasets/declare-lab/CRPO">
    <img src="https://img.shields.io/badge/TangoFlux_Dataset-Huggingface-red?logo=huggingface&link=https%3A%2F%2Fhuggingface.co%2Fdatasets%2Fdeclare-lab%2FTangoFlux" alt="Static Badge">
  </a>
  <a href="https://github.com/declare-lab/TangoFlux">
    <img src="https://img.shields.io/badge/Github-brown?logo=github&link=https%3A%2F%2Fgithub.com%2Fdeclare-lab%2FTangoFlux" alt="Static Badge">
  </a>
</div>



</div>

## Model Overview

TangoFlux consists of FluxTransformer blocks which are Diffusion Transformer (DiT) and Multimodal Diffusion Transformer (MMDiT), conditioned on textual prompt and duration embedding to generate audio at 44.1kHz up to 30 seconds. TangoFlux learns a rectified flow trajectory from audio latent representation encoded by a variational autoencoder (VAE). The TangoFlux training pipeline consists of three stages: pre-training, fine-tuning, and preference optimization. TangoFlux is aligned via CRPO which iteratively generates new synthetic data and constructs preference pairs to perform preference optimization.


## Getting Started
This model is the TangoFlux-base model before preference optimization. To use a more aligned model, please use TangoFlux from https://github.com/declare-lab/TangoFlux


Download TangoFlux from our github https://github.com/declare-lab/TangoFlux
The model will be automatically downloaded and saved in cache. Subsequent runs will load the model directly from cache.

The generate function uses 25 steps by default to sample from the flow model. We recommend using 50 steps for generating better quality audios. This comes at the cost of increased run-time.

```python
import torchaudio
from tangoflux import TangoFluxInference
from IPython.display import Audio

model = TangoFluxInference(name='declare-lab/TangoFlux-base')
audio = model.generate('Hammer slowly hitting the wooden table', steps=50, duration=10)

Audio(data=audio, rate=44100)
```
## Citation

https://arxiv.org/abs/2412.21037

```bibtex
@misc{hung2024tangofluxsuperfastfaithful,
      title={TangoFlux: Super Fast and Faithful Text to Audio Generation with Flow Matching and Clap-Ranked Preference Optimization}, 
      author={Chia-Yu Hung and Navonil Majumder and Zhifeng Kong and Ambuj Mehrish and Rafael Valle and Bryan Catanzaro and Soujanya Poria},
      year={2024},
      eprint={2412.21037},
      archivePrefix={arXiv},
      primaryClass={cs.SD},
      url={https://arxiv.org/abs/2412.21037}, 
}
```

## License
The TangoFlux checkpoints are for non-commercial research use only. They are subject to the [Stable Audio Open’s license](https://huggingface.co/stabilityai/stable-audio-open-1.0/blob/main/LICENSE.md), [WavCap’s license](https://github.com/XinhaoMei/WavCaps?tab=readme-ov-file#license), and the original licenses accompanying each training dataset.

This Stability AI Model is licensed under the Stability AI Community License, Copyright © Stability AI Ltd. All Rights Reserved