readme: update
Browse files
README.md
CHANGED
@@ -11,6 +11,8 @@ widget:
|
|
11 |
|
12 |
# Historic Language Models (HLMs)
|
13 |
|
|
|
|
|
14 |
Our Historic Language Models Zoo contains support for the following languages - incl. their training data source:
|
15 |
|
16 |
| Language | Training data | Size
|
@@ -21,6 +23,17 @@ Our Historic Language Models Zoo contains support for the following languages -
|
|
21 |
| Finnish | [Europeana](http://www.europeana-newspapers.eu/) | 1.2GB
|
22 |
| Swedish | [Europeana](http://www.europeana-newspapers.eu/) | 1.1GB
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
# Corpora Stats
|
25 |
|
26 |
## German Europeana Corpus
|
@@ -152,6 +165,8 @@ Total size is 130GB.
|
|
152 |
|
153 |
# Pretraining
|
154 |
|
|
|
|
|
155 |
We train a multilingual BERT model using the 32k vocab with the official BERT implementation
|
156 |
on a v3-32 TPU using the following parameters:
|
157 |
|
@@ -174,7 +189,91 @@ python3 run_pretraining.py --input_file gs://histolectra/historic-multilingual-t
|
|
174 |
|
175 |
The following plot shows the pretraining loss curve:
|
176 |
|
177 |
-
 progra
|
|
182 |
TensorFlow Research Cloud (TFRC). Many thanks for providing access to the TRC ❤️
|
183 |
|
184 |
Thanks to the generous support from the [Hugging Face](https://huggingface.co/) team,
|
185 |
-
it is possible to download both cased and uncased models from their S3 storage 🤗
|
|
|
11 |
|
12 |
# Historic Language Models (HLMs)
|
13 |
|
14 |
+
## Languages
|
15 |
+
|
16 |
Our Historic Language Models Zoo contains support for the following languages - incl. their training data source:
|
17 |
|
18 |
| Language | Training data | Size
|
|
|
23 |
| Finnish | [Europeana](http://www.europeana-newspapers.eu/) | 1.2GB
|
24 |
| Swedish | [Europeana](http://www.europeana-newspapers.eu/) | 1.1GB
|
25 |
|
26 |
+
## Models
|
27 |
+
|
28 |
+
At the moment, the following models are available on the model hub:
|
29 |
+
|
30 |
+
| Model identifier | Model Hub link
|
31 |
+
| --------------------------------------------- | --------------------------------------------------------------------------
|
32 |
+
| `dbmdz/bert-base-historic-multilingual-cased` | [here](https://huggingface.co/dbmdz/bert-base-historic-multilingual-cased)
|
33 |
+
| `dbmdz/bert-base-historic-english-cased` | [here](https://huggingface.co/dbmdz/bert-base-historic-english-cased)
|
34 |
+
| `dbmdz/bert-base-finnish-europeana-cased` | [here](https://huggingface.co/dbmdz/bert-base-finnish-europeana-cased)
|
35 |
+
| `dbmdz/bert-base-swedish-europeana-cased` | [here](https://huggingface.co/dbmdz/bert-base-swedish-europeana-cased)
|
36 |
+
|
37 |
# Corpora Stats
|
38 |
|
39 |
## German Europeana Corpus
|
|
|
165 |
|
166 |
# Pretraining
|
167 |
|
168 |
+
## Multilingual model
|
169 |
+
|
170 |
We train a multilingual BERT model using the 32k vocab with the official BERT implementation
|
171 |
on a v3-32 TPU using the following parameters:
|
172 |
|
|
|
189 |
|
190 |
The following plot shows the pretraining loss curve:
|
191 |
|
192 |
+

|
193 |
+
|
194 |
+
## English model
|
195 |
+
|
196 |
+
The English BERT model - with texts from British Library corpus - was trained with the Hugging Face
|
197 |
+
JAX/FLAX implementation for 10 epochs (approx. 1M steps) on a v3-8 TPU, using the following command:
|
198 |
+
|
199 |
+
```bash
|
200 |
+
python3 run_mlm_flax.py --model_type bert \
|
201 |
+
--config_name /mnt/datasets/bert-base-historic-english-cased/ \
|
202 |
+
--tokenizer_name /mnt/datasets/bert-base-historic-english-cased/ \
|
203 |
+
--train_file /mnt/datasets/bl-corpus/bl_1800-1900_extracted.txt \
|
204 |
+
--validation_file /mnt/datasets/bl-corpus/english_validation.txt \
|
205 |
+
--max_seq_length 512 \
|
206 |
+
--per_device_train_batch_size 16 \
|
207 |
+
--learning_rate 1e-4 \
|
208 |
+
--num_train_epochs 10 \
|
209 |
+
--preprocessing_num_workers 96 \
|
210 |
+
--output_dir /mnt/datasets/bert-base-historic-english-cased-512-noadafactor-10e \
|
211 |
+
--save_steps 2500 \
|
212 |
+
--eval_steps 2500 \
|
213 |
+
--warmup_steps 10000 \
|
214 |
+
--line_by_line \
|
215 |
+
--pad_to_max_length
|
216 |
+
```
|
217 |
+
|
218 |
+
The following plot shows the pretraining loss curve:
|
219 |
+
|
220 |
+

|
221 |
+
|
222 |
+
## Finnish model
|
223 |
+
|
224 |
+
The BERT model - with texts from Finnish part of Europeana - was trained with the Hugging Face
|
225 |
+
JAX/FLAX implementation for 40 epochs (approx. 1M steps) on a v3-8 TPU, using the following command:
|
226 |
+
|
227 |
+
```bash
|
228 |
+
python3 run_mlm_flax.py --model_type bert \
|
229 |
+
--config_name /mnt/datasets/bert-base-finnish-europeana-cased/ \
|
230 |
+
--tokenizer_name /mnt/datasets/bert-base-finnish-europeana-cased/ \
|
231 |
+
--train_file /mnt/datasets/hlms/extracted_content_Finnish_0.6.txt \
|
232 |
+
--validation_file /mnt/datasets/hlms/finnish_validation.txt \
|
233 |
+
--max_seq_length 512 \
|
234 |
+
--per_device_train_batch_size 16 \
|
235 |
+
--learning_rate 1e-4 \
|
236 |
+
--num_train_epochs 40 \
|
237 |
+
--preprocessing_num_workers 96 \
|
238 |
+
--output_dir /mnt/datasets/bert-base-finnish-europeana-cased-512-dupe1-noadafactor-40e \
|
239 |
+
--save_steps 2500 \
|
240 |
+
--eval_steps 2500 \
|
241 |
+
--warmup_steps 10000 \
|
242 |
+
--line_by_line \
|
243 |
+
--pad_to_max_length
|
244 |
+
```
|
245 |
+
|
246 |
+
The following plot shows the pretraining loss curve:
|
247 |
+
|
248 |
+

|
249 |
+
|
250 |
+
## Swedish model
|
251 |
+
|
252 |
+
The BERT model - with texts from Swedish part of Europeana - was trained with the Hugging Face
|
253 |
+
JAX/FLAX implementation for 40 epochs (approx. 660K steps) on a v3-8 TPU, using the following command:
|
254 |
+
|
255 |
+
```bash
|
256 |
+
python3 run_mlm_flax.py --model_type bert \
|
257 |
+
--config_name /mnt/datasets/bert-base-swedish-europeana-cased/ \
|
258 |
+
--tokenizer_name /mnt/datasets/bert-base-swedish-europeana-cased/ \
|
259 |
+
--train_file /mnt/datasets/hlms/extracted_content_Swedish_0.6.txt \
|
260 |
+
--validation_file /mnt/datasets/hlms/swedish_validation.txt \
|
261 |
+
--max_seq_length 512 \
|
262 |
+
--per_device_train_batch_size 16 \
|
263 |
+
--learning_rate 1e-4 \
|
264 |
+
--num_train_epochs 40 \
|
265 |
+
--preprocessing_num_workers 96 \
|
266 |
+
--output_dir /mnt/datasets/bert-base-swedish-europeana-cased-512-dupe1-noadafactor-40e \
|
267 |
+
--save_steps 2500 \
|
268 |
+
--eval_steps 2500 \
|
269 |
+
--warmup_steps 10000 \
|
270 |
+
--line_by_line \
|
271 |
+
--pad_to_max_length
|
272 |
+
```
|
273 |
+
|
274 |
+
The following plot shows the pretraining loss curve:
|
275 |
+
|
276 |
+

|
277 |
|
278 |
# Acknowledgments
|
279 |
|
|
|
281 |
TensorFlow Research Cloud (TFRC). Many thanks for providing access to the TRC ❤️
|
282 |
|
283 |
Thanks to the generous support from the [Hugging Face](https://huggingface.co/) team,
|
284 |
+
it is possible to download both cased and uncased models from their S3 storage 🤗
|