File size: 11,734 Bytes
0228215
8709526
 
0228215
 
8709526
0228215
a5d00c0
8709526
 
 
0228215
8709526
 
06ebf9f
 
8709526
 
 
 
 
 
06ebf9f
 
 
 
 
 
 
 
 
 
 
 
 
a067ff6
 
 
 
 
 
 
06ebf9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0228215
 
 
 
 
a067ff6
0228215
a067ff6
0228215
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
---
language:
- it
license: apache-2.0
tags:
- automatic-speech-recognition
- generated_from_trainer
- hf-asr-leaderboard
- robust-speech-event
datasets:
- mozilla-foundation/common_voice_7_0
model-index:
- name: XLS-R-1b - Italian
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice 7
      type: mozilla-foundation/common_voice_7_0
      args: it
    metrics:
    - name: Test WER
      type: wer
      value: 32.74
    - name: Test CER
      type: cer
      value: 7.83
    - name: Test WER (+LM)
      type: wer
      value: 19.55
    - name: Test CER (+LM)
      type: cer
      value: 5.59
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Robust Speech Event - Dev Data
      type: speech-recognition-community-v2/dev_data
      args: it
    metrics:
    - name: Test WER
      type: wer
      value: 43.23
    - name: Test CER
      type: cer
      value: 13.37
    - name: Test WER (+LM)
      type: wer
      value: 27.51
    - name: Test CER (+LM)
      type: cer
      value: 10.69
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Robust Speech Event - Test Data
      type: speech-recognition-community-v2/eval_data
      args: it
    metrics:
    - name: Test WER
      type: wer
      value: 51.12
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-xls-r-1b-italian-robust

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the Common Voice 7 & Libri Speech datasets.
It achieves the following results on the evaluation set:
- Loss: 0.2428
- Wer: 0.2960

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Wer    |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| No log        | 0.07  | 400   | 1.0053          | 0.8058 |
| 1.5087        | 0.13  | 800   | 0.9127          | 0.8104 |
| 0.9552        | 0.2   | 1200  | 1.0360          | 0.8836 |
| 0.9555        | 0.27  | 1600  | 0.9980          | 0.8577 |
| 1.0259        | 0.34  | 2000  | 1.0103          | 0.8842 |
| 1.0259        | 0.4   | 2400  | 0.9119          | 0.8466 |
| 1.0365        | 0.47  | 2800  | 0.9000          | 0.8281 |
| 1.0069        | 0.54  | 3200  | 0.7976          | 0.7875 |
| 0.9688        | 0.61  | 3600  | 0.8126          | 0.8051 |
| 0.9638        | 0.67  | 4000  | 0.7921          | 0.7903 |
| 0.9638        | 0.74  | 4400  | 0.7703          | 0.7783 |
| 0.9327        | 0.81  | 4800  | 0.7253          | 0.7463 |
| 0.8992        | 0.88  | 5200  | 0.6841          | 0.7171 |
| 0.8693        | 0.94  | 5600  | 0.6867          | 0.7250 |
| 0.8433        | 1.01  | 6000  | 0.7077          | 0.7302 |
| 0.8433        | 1.08  | 6400  | 0.6685          | 0.7091 |
| 0.8499        | 1.14  | 6800  | 0.6355          | 0.6825 |
| 0.8159        | 1.21  | 7200  | 0.6283          | 0.6800 |
| 0.8001        | 1.28  | 7600  | 0.6288          | 0.6743 |
| 0.7883        | 1.35  | 8000  | 0.5995          | 0.6633 |
| 0.7883        | 1.41  | 8400  | 0.6195          | 0.6726 |
| 0.7863        | 1.48  | 8800  | 0.6039          | 0.6588 |
| 0.7713        | 1.55  | 9200  | 0.5842          | 0.6490 |
| 0.7572        | 1.62  | 9600  | 0.5975          | 0.6533 |
| 0.7442        | 1.68  | 10000 | 0.5508          | 0.6233 |
| 0.7442        | 1.75  | 10400 | 0.5521          | 0.6209 |
| 0.7296        | 1.82  | 10800 | 0.5760          | 0.6245 |
| 0.7205        | 1.89  | 11200 | 0.5593          | 0.6144 |
| 0.7106        | 1.95  | 11600 | 0.5672          | 0.6220 |
| 0.7146        | 2.02  | 12000 | 0.5134          | 0.5911 |
| 0.7146        | 2.09  | 12400 | 0.5069          | 0.5811 |
| 0.6944        | 2.15  | 12800 | 0.5022          | 0.5962 |
| 0.6817        | 2.22  | 13200 | 0.4989          | 0.5813 |
| 0.6721        | 2.29  | 13600 | 0.4941          | 0.5742 |
| 0.6774        | 2.36  | 14000 | 0.4775          | 0.5676 |
| 0.6774        | 2.42  | 14400 | 0.4694          | 0.5525 |
| 0.6621        | 2.49  | 14800 | 0.4720          | 0.5514 |
| 0.6599        | 2.56  | 15200 | 0.4714          | 0.5553 |
| 0.6591        | 2.63  | 15600 | 0.4578          | 0.5397 |
| 0.645         | 2.69  | 16000 | 0.4619          | 0.5452 |
| 0.645         | 2.76  | 16400 | 0.4578          | 0.5343 |
| 0.6431        | 2.83  | 16800 | 0.4514          | 0.5328 |
| 0.636         | 2.9   | 17200 | 0.4526          | 0.5325 |
| 0.6433        | 2.96  | 17600 | 0.4561          | 0.5325 |
| 0.6356        | 3.03  | 18000 | 0.4386          | 0.5191 |
| 0.6356        | 3.1   | 18400 | 0.4291          | 0.5065 |
| 0.6175        | 3.16  | 18800 | 0.4306          | 0.5170 |
| 0.6187        | 3.23  | 19200 | 0.4256          | 0.5036 |
| 0.607         | 3.3   | 19600 | 0.4198          | 0.5027 |
| 0.6004        | 3.37  | 20000 | 0.4149          | 0.4906 |
| 0.6004        | 3.43  | 20400 | 0.4114          | 0.4902 |
| 0.6002        | 3.5   | 20800 | 0.4116          | 0.4967 |
| 0.5926        | 3.57  | 21200 | 0.4066          | 0.4843 |
| 0.5836        | 3.64  | 21600 | 0.3956          | 0.4791 |
| 0.588         | 3.7   | 22000 | 0.3941          | 0.4729 |
| 0.588         | 3.77  | 22400 | 0.3972          | 0.4799 |
| 0.5739        | 3.84  | 22800 | 0.4018          | 0.4790 |
| 0.5778        | 3.91  | 23200 | 0.3936          | 0.4750 |
| 0.5768        | 3.97  | 23600 | 0.3936          | 0.4751 |
| 0.5651        | 4.04  | 24000 | 0.3953          | 0.4706 |
| 0.5651        | 4.11  | 24400 | 0.3906          | 0.4659 |
| 0.5704        | 4.17  | 24800 | 0.3807          | 0.4557 |
| 0.5594        | 4.24  | 25200 | 0.3817          | 0.4610 |
| 0.5509        | 4.31  | 25600 | 0.3755          | 0.4553 |
| 0.5439        | 4.38  | 26000 | 0.3705          | 0.4471 |
| 0.5439        | 4.44  | 26400 | 0.3744          | 0.4487 |
| 0.5426        | 4.51  | 26800 | 0.3716          | 0.4483 |
| 0.5393        | 4.58  | 27200 | 0.3600          | 0.4356 |
| 0.5408        | 4.65  | 27600 | 0.3573          | 0.4307 |
| 0.5327        | 4.71  | 28000 | 0.3638          | 0.4382 |
| 0.5327        | 4.78  | 28400 | 0.3587          | 0.4316 |
| 0.5324        | 4.85  | 28800 | 0.3598          | 0.4290 |
| 0.5378        | 4.91  | 29200 | 0.3508          | 0.4243 |
| 0.5246        | 4.98  | 29600 | 0.3522          | 0.4260 |
| 0.5284        | 5.05  | 30000 | 0.3520          | 0.4268 |
| 0.5284        | 5.12  | 30400 | 0.3506          | 0.4224 |
| 0.5154        | 5.18  | 30800 | 0.3556          | 0.4223 |
| 0.5138        | 5.25  | 31200 | 0.3526          | 0.4276 |
| 0.51          | 5.32  | 31600 | 0.3440          | 0.4220 |
| 0.5065        | 5.39  | 32000 | 0.3367          | 0.4120 |
| 0.5065        | 5.45  | 32400 | 0.3406          | 0.4136 |
| 0.5087        | 5.52  | 32800 | 0.3370          | 0.4125 |
| 0.503         | 5.59  | 33200 | 0.3387          | 0.4134 |
| 0.5085        | 5.66  | 33600 | 0.3346          | 0.4068 |
| 0.5044        | 5.72  | 34000 | 0.3325          | 0.4057 |
| 0.5044        | 5.79  | 34400 | 0.3304          | 0.4026 |
| 0.4879        | 5.86  | 34800 | 0.3274          | 0.4002 |
| 0.4924        | 5.92  | 35200 | 0.3286          | 0.3980 |
| 0.4991        | 5.99  | 35600 | 0.3231          | 0.3952 |
| 0.487         | 6.06  | 36000 | 0.3324          | 0.4005 |
| 0.487         | 6.13  | 36400 | 0.3264          | 0.3952 |
| 0.4754        | 6.19  | 36800 | 0.3234          | 0.3905 |
| 0.4683        | 6.26  | 37200 | 0.3149          | 0.3840 |
| 0.4653        | 6.33  | 37600 | 0.3122          | 0.3824 |
| 0.4667        | 6.4   | 38000 | 0.3151          | 0.3855 |
| 0.4667        | 6.46  | 38400 | 0.3217          | 0.3859 |
| 0.4628        | 6.53  | 38800 | 0.3085          | 0.3831 |
| 0.4644        | 6.6   | 39200 | 0.3121          | 0.3791 |
| 0.4612        | 6.67  | 39600 | 0.3093          | 0.3790 |
| 0.4552        | 6.73  | 40000 | 0.3087          | 0.3749 |
| 0.4552        | 6.8   | 40400 | 0.3027          | 0.3679 |
| 0.4544        | 6.87  | 40800 | 0.3048          | 0.3672 |
| 0.4507        | 6.93  | 41200 | 0.2963          | 0.3614 |
| 0.4489        | 7.0   | 41600 | 0.3086          | 0.3718 |
| 0.4367        | 7.07  | 42000 | 0.3100          | 0.3754 |
| 0.4367        | 7.14  | 42400 | 0.3057          | 0.3701 |
| 0.4376        | 7.2   | 42800 | 0.2930          | 0.3614 |
| 0.428         | 7.27  | 43200 | 0.2907          | 0.3516 |
| 0.4241        | 7.34  | 43600 | 0.2916          | 0.3590 |
| 0.4312        | 7.41  | 44000 | 0.2904          | 0.3523 |
| 0.4312        | 7.47  | 44400 | 0.2908          | 0.3476 |
| 0.4292        | 7.54  | 44800 | 0.2858          | 0.3467 |
| 0.426         | 7.61  | 45200 | 0.2864          | 0.3484 |
| 0.4225        | 7.68  | 45600 | 0.2820          | 0.3441 |
| 0.422         | 7.74  | 46000 | 0.2834          | 0.3441 |
| 0.422         | 7.81  | 46400 | 0.2784          | 0.3420 |
| 0.4158        | 7.88  | 46800 | 0.2814          | 0.3390 |
| 0.4139        | 7.94  | 47200 | 0.2777          | 0.3384 |
| 0.4076        | 8.01  | 47600 | 0.2741          | 0.3381 |
| 0.3997        | 8.08  | 48000 | 0.2738          | 0.3320 |
| 0.3997        | 8.15  | 48400 | 0.2720          | 0.3303 |
| 0.4009        | 8.21  | 48800 | 0.2705          | 0.3357 |
| 0.3928        | 8.28  | 49200 | 0.2708          | 0.3265 |
| 0.3923        | 8.35  | 49600 | 0.2678          | 0.3283 |
| 0.3897        | 8.42  | 50000 | 0.2649          | 0.3241 |
| 0.3897        | 8.48  | 50400 | 0.2640          | 0.3218 |
| 0.3879        | 8.55  | 50800 | 0.2616          | 0.3197 |
| 0.3805        | 8.62  | 51200 | 0.2599          | 0.3170 |
| 0.3874        | 8.69  | 51600 | 0.2592          | 0.3168 |
| 0.3799        | 8.75  | 52000 | 0.2589          | 0.3157 |
| 0.3799        | 8.82  | 52400 | 0.2566          | 0.3137 |
| 0.3834        | 8.89  | 52800 | 0.2552          | 0.3141 |
| 0.3811        | 8.95  | 53200 | 0.2523          | 0.3108 |
| 0.3821        | 9.02  | 53600 | 0.2539          | 0.3112 |
| 0.3636        | 9.09  | 54000 | 0.2529          | 0.3070 |
| 0.3636        | 9.16  | 54400 | 0.2500          | 0.3078 |
| 0.3706        | 9.22  | 54800 | 0.2510          | 0.3067 |
| 0.367         | 9.29  | 55200 | 0.2497          | 0.3069 |
| 0.3618        | 9.36  | 55600 | 0.2493          | 0.3043 |
| 0.3624        | 9.43  | 56000 | 0.2491          | 0.3040 |
| 0.3624        | 9.49  | 56400 | 0.2466          | 0.3016 |
| 0.3557        | 9.56  | 56800 | 0.2460          | 0.3014 |
| 0.3536        | 9.63  | 57200 | 0.2470          | 0.2997 |
| 0.3584        | 9.7   | 57600 | 0.2441          | 0.2989 |
| 0.3563        | 9.76  | 58000 | 0.2442          | 0.2970 |
| 0.3563        | 9.83  | 58400 | 0.2436          | 0.2966 |
| 0.3492        | 9.9   | 58800 | 0.2431          | 0.2967 |
| 0.3483        | 9.96  | 59200 | 0.2428          | 0.2960 |


### Framework versions

- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.3
- Tokenizers 0.11.0