davidschulte commited on
Commit
fe13b8a
·
verified ·
1 Parent(s): 132ed1e

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +143 -5
README.md CHANGED
@@ -1,9 +1,147 @@
1
  ---
 
 
 
 
2
  tags:
3
- - model_hub_mixin
4
- - pytorch_model_hub_mixin
5
  ---
6
 
7
- This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration:
8
- - Library: [More Information Needed]
9
- - Docs: [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ base_model: google-bert/bert-base-uncased
3
+ datasets:
4
+ - prithivMLmods/Spam-Text-Detect-Analysis
5
+ license: apache-2.0
6
  tags:
7
+ - embedding_space_map
8
+ - BaseLM:google-bert/bert-base-uncased
9
  ---
10
 
11
+ # ESM prithivMLmods/Spam-Text-Detect-Analysis
12
+
13
+ <!-- Provide a quick summary of what the model is/does. -->
14
+
15
+
16
+
17
+ ## Model Details
18
+
19
+ ### Model Description
20
+
21
+ <!-- Provide a longer summary of what this model is. -->
22
+
23
+ ESM
24
+
25
+ - **Developed by:** [Unknown]
26
+ - **Model type:** ESM
27
+ - **Base Model:** google-bert/bert-base-uncased
28
+ - **Intermediate Task:** prithivMLmods/Spam-Text-Detect-Analysis
29
+ - **ESM architecture:** [More Information Needed] (The default architecture is a single dense layer.)
30
+ - **ESM embedding dimension:** [More Information Needed]
31
+ - **Language(s) (NLP):** [More Information Needed]
32
+ - **License:** Apache-2.0 license
33
+
34
+ ## Training Details
35
+
36
+ ### Intermediate Task
37
+ - **Task ID:** prithivMLmods/Spam-Text-Detect-Analysis
38
+ - **Subset [optional]:**
39
+ - **Text Column:**
40
+ - **Label Column:**
41
+ - **Dataset Split:** [More Information Needed]
42
+ - **Sample size [optional]:**
43
+ - **Sample seed [optional]:**
44
+
45
+ ### Training Procedure [optional]
46
+
47
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
48
+
49
+ #### Language Model Training Hyperparameters [optional]
50
+ - **Epochs:** [More Information Needed]
51
+ - **Batch size:** [More Information Needed]
52
+ - **Learning rate:** [More Information Needed]
53
+ - **Weight Decay:** [More Information Needed]
54
+ - **Optimizer**: [More Information Needed]
55
+
56
+ ### ESM Training Hyperparameters [optional]
57
+ - **Epochs:** 13
58
+ - **Batch size:** 32
59
+ - **Learning rate:** 0.034702669886504146
60
+ - **Weight Decay:** 1.2674255898937214e-05
61
+ - **Optimizer**: [More Information Needed]
62
+
63
+
64
+ ### Additional trainiung details [optional]
65
+
66
+
67
+ ## Model evaluation
68
+
69
+ ### Evaluation of fine-tuned language model [optional]
70
+
71
+
72
+ ### Evaluation of ESM [optional]
73
+ MSE:
74
+
75
+ ### Additional evaluation details [optional]
76
+
77
+
78
+
79
+ ## What are Embedding Space Maps?
80
+
81
+ <!-- This section describes the evaluation protocols and provides the results. -->
82
+ Embedding Space Maps (ESMs) are neural networks that approximate the effect of fine-tuning a language model on a task. They can be used to quickly transform embeddings from a base model to approximate how a fine-tuned model would embed the the input text.
83
+ ESMs can be used for intermediate task selection with the ESM-LogME workflow.
84
+
85
+ ## How can I use Embedding Space Maps for Intermediate Task Selection?
86
+ [![PyPI version](https://img.shields.io/pypi/v/hf-dataset-selector.svg)](https://pypi.org/project/hf-dataset-selector)
87
+
88
+ We release **hf-dataset-selector**, a Python package for intermediate task selection using Embedding Space Maps.
89
+
90
+ **hf-dataset-selector** fetches ESMs for a given language model and uses it to find the best dataset for applying intermediate training to the target task. ESMs are found by their tags on the Huggingface Hub.
91
+
92
+ ```python
93
+ from hfselect import Dataset, compute_task_ranking
94
+
95
+ # Load target dataset from the Hugging Face Hub
96
+ dataset = Dataset.from_hugging_face(
97
+ name="stanfordnlp/imdb",
98
+ split="train",
99
+ text_col="text",
100
+ label_col="label",
101
+ is_regression=False,
102
+ num_examples=1000,
103
+ seed=42
104
+ )
105
+
106
+ # Fetch ESMs and rank tasks
107
+ task_ranking = compute_task_ranking(
108
+ dataset=dataset,
109
+ model_name="bert-base-multilingual-uncased"
110
+ )
111
+
112
+ # Display top 5 recommendations
113
+ print(task_ranking[:5])
114
+ ```
115
+
116
+ For more information on how to use ESMs please have a look at the [official Github repository](https://github.com/davidschulte/hf-dataset-selector).
117
+
118
+ ## Citation
119
+
120
+
121
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
122
+ If you are using this Embedding Space Maps, please cite our [paper](https://arxiv.org/abs/2410.15148).
123
+
124
+ **BibTeX:**
125
+
126
+
127
+ ```
128
+ @misc{schulte2024moreparameterefficientselectionintermediate,
129
+ title={Less is More: Parameter-Efficient Selection of Intermediate Tasks for Transfer Learning},
130
+ author={David Schulte and Felix Hamborg and Alan Akbik},
131
+ year={2024},
132
+ eprint={2410.15148},
133
+ archivePrefix={arXiv},
134
+ primaryClass={cs.CL},
135
+ url={https://arxiv.org/abs/2410.15148},
136
+ }
137
+ ```
138
+
139
+
140
+ **APA:**
141
+
142
+ ```
143
+ Schulte, D., Hamborg, F., & Akbik, A. (2024). Less is More: Parameter-Efficient Selection of Intermediate Tasks for Transfer Learning. arXiv preprint arXiv:2410.15148.
144
+ ```
145
+
146
+ ## Additional Information
147
+