davidschulte commited on
Commit
a043d56
·
verified ·
1 Parent(s): 353d978

Push model using huggingface_hub.

Browse files
Files changed (3) hide show
  1. README.md +5 -143
  2. config.json +3 -24
  3. model.safetensors +1 -1
README.md CHANGED
@@ -1,147 +1,9 @@
1
  ---
2
- base_model: google-bert/bert-base-uncased
3
- datasets:
4
- - prithivMLmods/Spam-Text-Detect-Analysis
5
- license: apache-2.0
6
  tags:
7
- - embedding_space_map
8
- - BaseLM:google-bert/bert-base-uncased
9
  ---
10
 
11
- # ESM prithivMLmods/Spam-Text-Detect-Analysis
12
-
13
- <!-- Provide a quick summary of what the model is/does. -->
14
-
15
-
16
-
17
- ## Model Details
18
-
19
- ### Model Description
20
-
21
- <!-- Provide a longer summary of what this model is. -->
22
-
23
- ESM
24
-
25
- - **Developed by:** [Unknown]
26
- - **Model type:** ESM
27
- - **Base Model:** google-bert/bert-base-uncased
28
- - **Intermediate Task:** prithivMLmods/Spam-Text-Detect-Analysis
29
- - **ESM architecture:** [More Information Needed] (The default architecture is a single dense layer.)
30
- - **ESM embedding dimension:** [More Information Needed]
31
- - **Language(s) (NLP):** [More Information Needed]
32
- - **License:** Apache-2.0 license
33
-
34
- ## Training Details
35
-
36
- ### Intermediate Task
37
- - **Task ID:** prithivMLmods/Spam-Text-Detect-Analysis
38
- - **Subset [optional]:**
39
- - **Text Column:**
40
- - **Label Column:**
41
- - **Dataset Split:** [More Information Needed]
42
- - **Sample size [optional]:**
43
- - **Sample seed [optional]:**
44
-
45
- ### Training Procedure [optional]
46
-
47
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
48
-
49
- #### Language Model Training Hyperparameters [optional]
50
- - **Epochs:** [More Information Needed]
51
- - **Batch size:** [More Information Needed]
52
- - **Learning rate:** [More Information Needed]
53
- - **Weight Decay:** [More Information Needed]
54
- - **Optimizer**: [More Information Needed]
55
-
56
- ### ESM Training Hyperparameters [optional]
57
- - **Epochs:** 13
58
- - **Batch size:** 32
59
- - **Learning rate:** 0.034702669886504146
60
- - **Weight Decay:** 1.2674255898937214e-05
61
- - **Optimizer**: [More Information Needed]
62
-
63
-
64
- ### Additional trainiung details [optional]
65
-
66
-
67
- ## Model evaluation
68
-
69
- ### Evaluation of fine-tuned language model [optional]
70
-
71
-
72
- ### Evaluation of ESM [optional]
73
- MSE:
74
-
75
- ### Additional evaluation details [optional]
76
-
77
-
78
-
79
- ## What are Embedding Space Maps?
80
-
81
- <!-- This section describes the evaluation protocols and provides the results. -->
82
- Embedding Space Maps (ESMs) are neural networks that approximate the effect of fine-tuning a language model on a task. They can be used to quickly transform embeddings from a base model to approximate how a fine-tuned model would embed the the input text.
83
- ESMs can be used for intermediate task selection with the ESM-LogME workflow.
84
-
85
- ## How can I use Embedding Space Maps for Intermediate Task Selection?
86
- [![PyPI version](https://img.shields.io/pypi/v/hf-dataset-selector.svg)](https://pypi.org/project/hf-dataset-selector)
87
-
88
- We release **hf-dataset-selector**, a Python package for intermediate task selection using Embedding Space Maps.
89
-
90
- **hf-dataset-selector** fetches ESMs for a given language model and uses it to find the best dataset for applying intermediate training to the target task. ESMs are found by their tags on the Huggingface Hub.
91
-
92
- ```python
93
- from hfselect import Dataset, compute_task_ranking
94
-
95
- # Load target dataset from the Hugging Face Hub
96
- dataset = Dataset.from_hugging_face(
97
- name="stanfordnlp/imdb",
98
- split="train",
99
- text_col="text",
100
- label_col="label",
101
- is_regression=False,
102
- num_examples=1000,
103
- seed=42
104
- )
105
-
106
- # Fetch ESMs and rank tasks
107
- task_ranking = compute_task_ranking(
108
- dataset=dataset,
109
- model_name="bert-base-multilingual-uncased"
110
- )
111
-
112
- # Display top 5 recommendations
113
- print(task_ranking[:5])
114
- ```
115
-
116
- For more information on how to use ESMs please have a look at the [official Github repository](https://github.com/davidschulte/hf-dataset-selector).
117
-
118
- ## Citation
119
-
120
-
121
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
122
- If you are using this Embedding Space Maps, please cite our [paper](https://arxiv.org/abs/2410.15148).
123
-
124
- **BibTeX:**
125
-
126
-
127
- ```
128
- @misc{schulte2024moreparameterefficientselectionintermediate,
129
- title={Less is More: Parameter-Efficient Selection of Intermediate Tasks for Transfer Learning},
130
- author={David Schulte and Felix Hamborg and Alan Akbik},
131
- year={2024},
132
- eprint={2410.15148},
133
- archivePrefix={arXiv},
134
- primaryClass={cs.CL},
135
- url={https://arxiv.org/abs/2410.15148},
136
- }
137
- ```
138
-
139
-
140
- **APA:**
141
-
142
- ```
143
- Schulte, D., Hamborg, F., & Akbik, A. (2024). Less is More: Parameter-Efficient Selection of Intermediate Tasks for Transfer Learning. arXiv preprint arXiv:2410.15148.
144
- ```
145
-
146
- ## Additional Information
147
-
 
1
  ---
 
 
 
 
2
  tags:
3
+ - model_hub_mixin
4
+ - pytorch_model_hub_mixin
5
  ---
6
 
7
+ This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration:
8
+ - Library: [More Information Needed]
9
+ - Docs: [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
config.json CHANGED
@@ -1,25 +1,4 @@
1
  {
2
- "base_model_name": "google-bert/bert-base-uncased",
3
- "developers": null,
4
- "esm_architecture": null,
5
- "esm_batch_size": 32,
6
- "esm_embedding_dim": null,
7
- "esm_learning_rate": 0.034702669886504146,
8
- "esm_num_epochs": 13,
9
- "esm_optimizer": null,
10
- "esm_weight_decay": 1.2674255898937214e-05,
11
- "label_column": null,
12
- "language": null,
13
- "lm_batch_size": null,
14
- "lm_learning_rate": null,
15
- "lm_num_epochs": null,
16
- "lm_optimizer": null,
17
- "lm_weight_decay": null,
18
- "num_examples": null,
19
- "seed": null,
20
- "task_id": "prithivMLmods/Spam-Text-Detect-Analysis",
21
- "task_split": null,
22
- "task_subset": null,
23
- "text_column": null,
24
- "transformers_version": "4.47.1"
25
- }
 
1
  {
2
+ "architecture": "linear",
3
+ "embedding_dim": 768
4
+ }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:73218c51966eb72061203a9a8548f12324248d46066b5a2d74b144c3942622f3
3
  size 4725064
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a1ea8baf249780da668a84594e4689ade128b95c532db14e9fbcd6f47e581679
3
  size 4725064