--- library_name: transformers license: mit base_model: roberta-base tags: - bert-ner-address-2 - generated_from_trainer metrics: - precision - recall - f1 model-index: - name: ner_results results: [] --- # ner_results This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0004 - Precision: 0.9999 - Recall: 0.9999 - F1: 0.9999 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | |:-------------:|:-----:|:------:|:---------------:|:---------:|:------:|:------:| | 0.0003 | 1.0 | 35645 | 0.0010 | 0.9997 | 0.9998 | 0.9997 | | 0.0 | 2.0 | 71290 | 0.0008 | 0.9998 | 0.9998 | 0.9998 | | 0.0 | 3.0 | 106935 | 0.0003 | 0.9999 | 0.9999 | 0.9999 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.4.0 - Datasets 3.1.0 - Tokenizers 0.20.3