--- library_name: transformers license: mit base_model: roberta-base tags: - bert-ner-address - generated_from_trainer metrics: - precision - recall - f1 model-index: - name: ner-results-3 results: [] --- # ner-results-3 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0132 - Precision: 0.9940 - Recall: 0.9950 - F1: 0.9945 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | |:-------------:|:-----:|:------:|:---------------:|:---------:|:------:|:------:| | 0.0176 | 1.0 | 71551 | 0.0148 | 0.9932 | 0.9953 | 0.9943 | | 0.008 | 2.0 | 143102 | 0.0108 | 0.9950 | 0.9958 | 0.9954 | ### Framework versions - Transformers 4.51.1 - Pytorch 2.5.1+cu124 - Datasets 3.5.0 - Tokenizers 0.21.0