--- dataset_info: features: - name: year dtype: string - name: id dtype: string - name: problem dtype: string - name: solution dtype: string - name: answer_type dtype: string - name: source dtype: string - name: type dtype: string - name: original_problem dtype: string - name: original_solution dtype: string - name: variation dtype: int64 splits: - name: train num_bytes: 420734.1954022989 num_examples: 150 - name: validation num_bytes: 420734.1954022989 num_examples: 150 - name: test num_bytes: 622686.6091954022 num_examples: 222 download_size: 822829 dataset_size: 1464155.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* --- # Putnam-AXIOM Splits for ZIP-FIT This repository contains the train, validation, and test splits of the Putnam-AXIOM dataset specifically for use with the ZIP-FIT methodology research. The dataset is split as follows: - **train**: 150 examples - **validation**: 150 examples - **test**: 222 examples These splits are derived from the original 522 Putnam problems found in the main Putnam-AXIOM repository. ## Main Repository The full dataset with original problems and variations is available in the main repository: [Putnam-AXIOM/putnam-axiom-dataset-ICML-2025-522](https://huggingface.co/datasets/Putnam-AXIOM/putnam-axiom-dataset-ICML-2025-522) ## Usage ```python from datasets import load_dataset # Load the dataset dataset = load_dataset("zipfit/Putnam-AXIOM-for-zip-fit-splits") # Access each split train_data = dataset["train"] validation_data = dataset["validation"] test_data = dataset["test"] ``` ## Citation If you use this dataset, please cite it as follows: ```bibtex @article{putnam_axiom2025, title={Putnam-AXIOM: A Functional and Static Benchmark for Measuring Higher Level Mathematical Reasoning}, author={Aryan Gulati and Brando Miranda and Eric Chen and Emily Xia and Kai Fronsdal and Bruno de Moraes Dumont and Sanmi Koyejo}, journal={39th International Conference on Machine Learning (ICML 2025)}, year={2025}, note={Preprint available at: https://openreview.net/pdf?id=YXnwlZe0yf, ICML paper: https://openreview.net/forum?id=kqj2Cn3Sxr} } @article{miranda2024zipfit, title={ZIP-FIT: Embedding-Free Data Selection via Compression-Based Alignment}, year = {2024}, journal = {arXiv preprint arXiv:2410.18194}, } ``` ## ZIP-FIT Project For more information on the ZIP-FIT framework, including code and documentation, visit the [ZIP-FIT GitHub repository](https://github.com/brando90/evals-for-autoformalization). ## License This dataset is licensed under the Apache 2.0.