|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | """The Loading scripts for ImageRewardDB.""" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | import pandas as pd | 
					
						
						|  | import json | 
					
						
						|  | import os | 
					
						
						|  |  | 
					
						
						|  | import datasets | 
					
						
						|  | from huggingface_hub import hf_hub_url | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | _CITATION = """\ | 
					
						
						|  | @misc{xu2023imagereward, | 
					
						
						|  | title={ImageReward: Learning and Evaluating Human Preferences for Text-to-Image Generation}, | 
					
						
						|  | author={Jiazheng Xu and Xiao Liu and Yuchen Wu and Yuxuan Tong and Qinkai Li and Ming Ding and Jie Tang and Yuxiao Dong}, | 
					
						
						|  | year={2023}, | 
					
						
						|  | eprint={2304.05977}, | 
					
						
						|  | archivePrefix={arXiv}, | 
					
						
						|  | primaryClass={cs.CV} | 
					
						
						|  | } | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | _DESCRIPTION = """\ | 
					
						
						|  | ImageRewardDB is a comprehensive text-to-image comparison dataset, focusing on text-to-image human preference. \ | 
					
						
						|  | It consists of 137k pairs of expert comparisons, based on text prompts and corresponding model outputs from DiffusionDB. \ | 
					
						
						|  | To build the ImageRewadDB, we design a pipeline tailored for it, establishing criteria for quantitative assessment and \ | 
					
						
						|  | annotator training, optimizing labeling experience, and ensuring quality validation. \ | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | _HOMEPAGE = "https://huggingface.co/datasets/wuyuchen/ImageRewardDB" | 
					
						
						|  | _VERSION = datasets.Version("1.0.0") | 
					
						
						|  |  | 
					
						
						|  | _LICENSE = "Apache License 2.0" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | _REPO_ID = "wuyuchen/ImageRewardDB" | 
					
						
						|  | _URLS = {} | 
					
						
						|  | _PART_IDS = { | 
					
						
						|  | "train": 32, | 
					
						
						|  | "validation": 2, | 
					
						
						|  | "test": 2 | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | for name in list(_PART_IDS.keys()): | 
					
						
						|  | _URLS[name] = {} | 
					
						
						|  | for i in range(1, _PART_IDS[name]+1): | 
					
						
						|  | _URLS[name][i] = hf_hub_url( | 
					
						
						|  | _REPO_ID, | 
					
						
						|  | filename=f"images/{name}/{name}_{i}.zip", | 
					
						
						|  | repo_type="dataset" | 
					
						
						|  | ) | 
					
						
						|  | _URLS[name]["metadata"] = hf_hub_url( | 
					
						
						|  | _REPO_ID, | 
					
						
						|  | filename=f"metadata-{name}.parquet", | 
					
						
						|  | repo_type="dataset" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | class ImageRewardDBConfig(datasets.BuilderConfig): | 
					
						
						|  | '''BuilderConfig for ImageRewardDB''' | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, part_ids, **kwargs): | 
					
						
						|  | '''BuilderConfig for ImageRewardDB | 
					
						
						|  | Args: | 
					
						
						|  | part_ids([int]): A list of part_ids. | 
					
						
						|  | **kwargs: keyword arguments forwarded to super | 
					
						
						|  | ''' | 
					
						
						|  | super(ImageRewardDBConfig, self).__init__(version=_VERSION, **kwargs) | 
					
						
						|  | self.part_ids = part_ids | 
					
						
						|  |  | 
					
						
						|  | class ImageRewardDB(datasets.GeneratorBasedBuilder): | 
					
						
						|  | """A dataset of 137k expert comparisons to date, demonstrating the text-to-image human preference.""" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | BUILDER_CONFIGS = [] | 
					
						
						|  |  | 
					
						
						|  | for num_k in [1,2,4,8]: | 
					
						
						|  | part_ids = { | 
					
						
						|  | "train": 4*num_k, | 
					
						
						|  | "validation": 2, | 
					
						
						|  | "test": 2 | 
					
						
						|  | } | 
					
						
						|  | BUILDER_CONFIGS.append( | 
					
						
						|  | ImageRewardDBConfig(name=f"{num_k}k", part_ids=part_ids, description=f"This is a {num_k}k-scale ImageRewardDB") | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | DEFAULT_CONFIG_NAME = "8k" | 
					
						
						|  |  | 
					
						
						|  | def _info(self): | 
					
						
						|  | features = datasets.Features( | 
					
						
						|  | { | 
					
						
						|  | "image": datasets.Image(), | 
					
						
						|  | "prompt_id": datasets.Value("string"), | 
					
						
						|  | "prompt": datasets.Value("string"), | 
					
						
						|  | "classification": datasets.Value("string"), | 
					
						
						|  | "image_amount_in_total": datasets.Value("int8"), | 
					
						
						|  | "rank": datasets.Value("int8"), | 
					
						
						|  | "overall_rating": datasets.Value("int8"), | 
					
						
						|  | "image_text_alignment_rating": datasets.Value("int8"), | 
					
						
						|  | "fidelity_rating": datasets.Value("int8") | 
					
						
						|  | } | 
					
						
						|  | ) | 
					
						
						|  | return datasets.DatasetInfo( | 
					
						
						|  |  | 
					
						
						|  | description=_DESCRIPTION, | 
					
						
						|  |  | 
					
						
						|  | features=features, | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | homepage=_HOMEPAGE, | 
					
						
						|  |  | 
					
						
						|  | license=_LICENSE, | 
					
						
						|  |  | 
					
						
						|  | citation=_CITATION, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def _split_generators(self, dl_manager): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | data_dirs = {name: [] for name in list(_PART_IDS.keys())} | 
					
						
						|  | json_paths = {name: [] for name in list(_PART_IDS.keys())} | 
					
						
						|  | metadata_paths = {name: [] for name in list(_PART_IDS.keys())} | 
					
						
						|  | for key in list(self.config.part_ids.keys()): | 
					
						
						|  | for i in range(1, self.config.part_ids[key]+1): | 
					
						
						|  | data_dir = dl_manager.download_and_extract(_URLS[key][i]) | 
					
						
						|  | data_dirs[key].append(data_dir) | 
					
						
						|  | json_paths[key].append(os.path.join(data_dir, f"{key}_{i}.json")) | 
					
						
						|  | metadata_paths[key] = dl_manager.download(_URLS[key]["metadata"]) | 
					
						
						|  | return [ | 
					
						
						|  | datasets.SplitGenerator( | 
					
						
						|  | name=datasets.Split.TRAIN, | 
					
						
						|  |  | 
					
						
						|  | gen_kwargs={ | 
					
						
						|  | "split": "train", | 
					
						
						|  | "data_dirs": data_dirs["train"], | 
					
						
						|  | "json_paths": json_paths["train"], | 
					
						
						|  | "metadata_path": metadata_paths["train"] | 
					
						
						|  | }, | 
					
						
						|  | ), | 
					
						
						|  | datasets.SplitGenerator( | 
					
						
						|  | name=datasets.Split.VALIDATION, | 
					
						
						|  |  | 
					
						
						|  | gen_kwargs={ | 
					
						
						|  | "split": "validation", | 
					
						
						|  | "data_dirs": data_dirs["validation"], | 
					
						
						|  | "json_paths": json_paths["validation"], | 
					
						
						|  | "metadata_path": metadata_paths["validation"] | 
					
						
						|  | }, | 
					
						
						|  | ), | 
					
						
						|  | datasets.SplitGenerator( | 
					
						
						|  | name=datasets.Split.TEST, | 
					
						
						|  |  | 
					
						
						|  | gen_kwargs={ | 
					
						
						|  | "split": "test", | 
					
						
						|  | "data_dirs": data_dirs["test"], | 
					
						
						|  | "json_paths": json_paths["test"], | 
					
						
						|  | "metadata_path": metadata_paths["test"] | 
					
						
						|  | }, | 
					
						
						|  | ), | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _generate_examples(self, split, data_dirs, json_paths, metadata_path): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | num_data_dirs = len(data_dirs) | 
					
						
						|  | assert num_data_dirs == len(json_paths) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | metadata_table = pd.read_parquet(metadata_path) | 
					
						
						|  | for index, json_path in enumerate(json_paths): | 
					
						
						|  | json_data = json.load(open(json_path, "r", encoding="utf-8")) | 
					
						
						|  | for example in json_data: | 
					
						
						|  | image_path = os.path.join(data_dirs[index], str(example["image_path"]).split("/")[-1]) | 
					
						
						|  | yield example["image_path"], { | 
					
						
						|  | "image": { | 
					
						
						|  | "path": image_path, | 
					
						
						|  | "bytes": open(image_path, "rb").read() | 
					
						
						|  | }, | 
					
						
						|  | "prompt_id": example["prompt_id"], | 
					
						
						|  | "prompt": example["prompt"], | 
					
						
						|  | "classification": example["classification"], | 
					
						
						|  | "image_amount_in_total": example["image_amount_in_total"], | 
					
						
						|  | "rank": example["rank"], | 
					
						
						|  | "overall_rating": example["overall_rating"], | 
					
						
						|  | "image_text_alignment_rating": example["image_text_alignment_rating"], | 
					
						
						|  | "fidelity_rating": example["fidelity_rating"] | 
					
						
						|  | } |