yangyz1230 commited on
Commit
da221c8
·
verified ·
1 Parent(s): 4edf563

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +59 -0
README.md ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - biology
4
+ ---
5
+
6
+ This dataset card contains data from the original [Basenji project](https://console.cloud.google.com/storage/browser/basenji_barnyard?inv=1&invt=AbzSKw). The original Basenji dataset has two main limitations:
7
+
8
+ 1. **Format**: Data is stored in TensorFlow format, which is not directly compatible with PyTorch workflows
9
+ 2. **Cost**: Users need to pay Google Cloud storage fees to download the data
10
+
11
+ To facilitate PyTorch-based training, we have downloaded and converted the data to H5 format. With permission from the original Basenji authors, we are releasing the H5-formatted data here for free access.
12
+
13
+ ## 📁 Key Files
14
+
15
+ - `human_train.h5`, `human_valid.h5`, `human_test.h5`
16
+ - `mouse_train.h5`, `mouse_valid.h5`, `mouse_test.h5`
17
+
18
+ ## 📦 File Splitting & Reconstruction
19
+
20
+ Since the training files exceed 50GB and cannot be directly uploaded to 🤗 Hugging Face, we split them using the following commands:
21
+
22
+ ```bash
23
+ split -b 45G -d -a 2 human_train.h5 human_train_part_
24
+ split -b 45G -d -a 2 mouse_train.h5 mouse_train_part_
25
+ ```
26
+
27
+ After downloading all part files, you need to reconstruct the original H5 files:
28
+ ```
29
+ # Reconstruct human_train.h5
30
+ cat human_train_part_* > human_train.h5
31
+
32
+ # Reconstruct mouse_train.h5
33
+ cat mouse_train_part_* > mouse_train.h5
34
+ ```
35
+
36
+ ## 📖 Citation
37
+ If you find this dataset useful, please cite both the original Basenji paper and our work:
38
+ ```
39
+ @article{kelley2018sequential,
40
+ title={Sequential regulatory activity prediction across chromosomes with convolutional neural networks},
41
+ author={Kelley, David R and Reshef, Yakir A and Bileschi, Maxwell and Belanger, David and McLean, Cory Y and Snoek, Jasper},
42
+ journal={Genome research},
43
+ volume={28},
44
+ number={5},
45
+ pages={739--750},
46
+ year={2018},
47
+ publisher={Cold Spring Harbor Lab}
48
+ }
49
+
50
+ @misc{yang2025spacegenomicprofilepredictor,
51
+ title={SPACE: Your Genomic Profile Predictor is a Powerful DNA Foundation Model},
52
+ author={Zhao Yang and Jiwei Zhu and Bing Su},
53
+ year={2025},
54
+ eprint={2506.01833},
55
+ archivePrefix={arXiv},
56
+ primaryClass={cs.LG},
57
+ url={https://arxiv.org/abs/2506.01833}
58
+ }
59
+ ```