import enum import os from pathlib import Path import click import matplotlib.pyplot as plt import polars as pl class ImageFormat(enum.Enum): PNG = "png" JPEG = "jpg" @click.command() @click.option( "--src_dir", type=click.Path(exists=True, file_okay=False), required=True, help="Path to the directory containing dataset, e.g., './data'.", ) @click.option( "--dst_dir", type=click.Path(file_okay=False), required=False, help="Path to the directory where statisics will be saved. " "If not specified, statistics is saved in '{src_dir}/stats'. e.g., './stats'.", ) @click.option( "--file_name", type=str, default="multi_event", help="Base name for multi-event file. Default is 'multi_event'.", ) def cli(src_dir: str, dst_dir: str, file_name: str): if dst_dir is None: dst_dir = f"{src_dir}/stats" generate_dataset_stats(src_dir, dst_dir, file_name) def generate_dataset_stats(src_dir: str, dst_dir: str, file_name: str): src_dir, dst_dir = Path(src_dir), Path(dst_dir) src_dir_flat, src_dir_seq = src_dir / "flat", src_dir / "sequential" file_name = f"{file_name}.parquet" sizes = sorted(path.name for path in src_dir_flat.iterdir()) for size in sizes: path_flat, path_seq = src_dir_flat / size, src_dir_seq / size assert path_seq.exists(), f"Cannot find sequential data in '{path_seq}'" assert (path_flat / file_name).exists(), ( "Please, generate flat multi-event file using " "'make_multievent.py' or specify correct name using --file_name" ) assert (path_seq / file_name).exists(), ( "Please, generate sequential multi-event file " "using 'transform2sequential.py' script or specify correct name " "using --file_name" ) print(f"Gathering stats for {size}...") dst_dir_size = dst_dir / size dst_dir_size.mkdir(parents=True, exist_ok=True) df = pl.scan_parquet(path_seq / file_name) generate_user_history_graph(df, dst_dir_size / "user_history_len.png") generate_log_user_history_graph(df, dst_dir_size / "user_history_log_len.png") df = pl.scan_parquet(path_flat / file_name) generate_item_interactions_graph(df, dst_dir_size / "item_interactions.png") get_recom_stats(df).write_csv(dst_dir_size / "recom_event_count.csv") get_history_len_stats(df).write_csv(dst_dir_size / "event_history_len.csv") get_dataset_stats(df).write_csv(dst_dir_size / "dataset_event_stats.csv") def make_history_len_graph( df: pl.DataFrame, *, qs: tuple[float] | None = None, color: str = "lightskyblue", num_bins: int = 100, title: str | None = None, xlabel: str | None = None, ylabel: str | None = None, ax: plt.Axes | None = None, ) -> plt.Axes: if ax is None: _, ax = plt.subplots(figsize=(12, 5)) count, _, _ = ax.hist(df["value"], bins=num_bins, ec="k", lw=1.0, color=color) ylim = count.max() * 1.05 xs = {"max": df["value"].max()} if qs is not None: xs.update((f"q{q * 100:.0f}", df["value"].quantile(q)) for q in qs) dx = 0.01 * (xs["max"] - df["value"].min()) template = "{label}={x:.3f}" if xs["max"] <= 10 else "{label}={x:.0f}" for label, x in xs.items(): ax.plot([x, x], [0, ylim], ls="--", c="k") text = template.format(label=label, x=x) ax.text(x + dx, ylim // 2, text, rotation=90, fontsize=16, bbox=dict(alpha=0.1, color="r")) if title is not None: ax.set_title(title, fontsize=24) ax.set_xlabel(xlabel or "Value", fontsize=22) ax.set_ylabel(ylabel or "Count", fontsize=22) ax.set_ylim([0, ylim]) ax.tick_params(labelsize=16) ax.ticklabel_format(style="sci", useMathText=True) def save_graph(output_path: os.PathLike, fmt: ImageFormat = ImageFormat.PNG): output_path = Path(output_path) if not output_path.suffix: output_path = output_path.with_suffix(f".{fmt.value}") if output_path.exists(): print(f"Rewriting file '{output_path}'") else: print(f"Saving to '{output_path}'") plt.savefig(output_path, dpi=300, format=fmt.value) def generate_user_history_graph(df: pl.LazyFrame, out_path: os.PathLike): _, ax = plt.subplots(figsize=(12, 5)) make_history_len_graph( df.select(value=pl.col("item_id").list.len()).collect(), num_bins=100, qs=(0.5, 0.9, 0.95), xlabel="Events", ylabel="Users", ax=ax, ) plt.tight_layout() save_graph(out_path) def generate_log_user_history_graph(df: pl.LazyFrame, out_path: os.PathLike): _, ax = plt.subplots(figsize=(12, 5)) make_history_len_graph( df.select(value=pl.col("item_id").list.len().log10()).collect(), num_bins=40, xlabel="$Log_{10}$(Events)", ylabel="Users", color="lightgreen", ax=ax, ) plt.tight_layout() save_graph(out_path) def generate_item_interactions_graph(df: pl.LazyFrame, out_path: os.PathLike): _, ax = plt.subplots(figsize=(12, 5)) make_history_len_graph( df.group_by("item_id").len().select(value=pl.col("len").log10()).collect(), num_bins=30, qs=(0.5, 0.9, 0.95), xlabel="$Log_{10}$(Events)", ylabel="Items", color="orange", ax=ax, ) plt.tight_layout() save_graph(out_path) def get_recom_stats(df: pl.LazyFrame) -> pl.DataFrame: print("Computing recom stats") df_cnt = df.group_by(("event_type", "is_organic")).len().collect() df_recom = df_cnt.filter(pl.col("is_organic").eq(0)).select(pl.col("event_type"), pl.col("len").alias("recom")) df_total = df_cnt.group_by("event_type").sum().select(pl.col("event_type"), pl.col("len").alias("total")) return df_total.join(df_recom, on="event_type").with_columns(ratio=pl.col("recom") / pl.col("total")) def get_history_len_stats(df: pl.LazyFrame) -> pl.DataFrame: print("Computing event history length stats") return ( df.group_by(("event_type", "uid")) .len() .group_by("event_type") .agg( median=pl.col("len").quantile(0.5).cast(pl.Int32), q90=pl.col("len").quantile(0.9).cast(pl.Int32), q95=pl.col("len").quantile(0.95).cast(pl.Int32), ) .collect() ) def get_dataset_stats(df: pl.LazyFrame) -> pl.DataFrame: print("Computing dataset stats") return df.select( users=pl.col("uid").unique().len(), items=pl.col("item_id").unique().len(), listens=pl.col("event_type").filter(pl.col("event_type").eq("listen")).len(), likes=pl.col("event_type").filter(pl.col("event_type").eq("like")).len(), dislikes=pl.col("event_type").filter(pl.col("event_type").eq("dislike")).len(), unlikes=pl.col("event_type").filter(pl.col("event_type").eq("unlike")).len(), undislikes=pl.col("event_type").filter(pl.col("event_type").eq("undislike")).len(), ).collect() if __name__ == "__main__": cli()