import gc import json from pathlib import Path from typing import Any import click import polars as pl import torch from yambda.constants import Constants from yambda.evaluation.metrics import calc_metrics from yambda.evaluation.ranking import Embeddings, Targets, rank_items from yambda.processing import timesplit from yambda.utils import argmax DEFAULT_GRIDS = { "50m": { "likes": [0, 0.001, 0.25, 0.5, 1, 2, 3, 4, 6], "listens": [0, 0.001, 0.002, 0.004, 0.008, 0.016, 0.032, 0.064, 0.128, 0.256, 0.5, 1.0, 2], }, "500m": { "likes": [0, 0.002, 0.004, 0.008, 0.016, 0.032, 0.064, 0.128, 0.256, 0.5, 1.0], "listens": [0, 0.001, 0.002, 0.004, 0.008], }, } @click.command() @click.option( '--data_dir', required=True, type=str, default="../../data/flat", show_default=True, help="Expects flat data" ) @click.option( '--size', required=True, type=click.Choice(['50m', '500m']), # 5b is not supported default="50m", multiple=False, show_default=True, help="5b is not supported due to (num_user, num_user) matrix", ) @click.option( '--interaction', required=True, type=click.Choice(['likes', 'listens']), default="likes", multiple=False, show_default=True, ) @click.option( '--hours', required=True, type=float, default=[-1], multiple=True, show_default=True, help="Hyperparameter. If -1 default grid will be used", ) @click.option('--validation_metric', required=True, type=str, default="ndcg@100", show_default=True) @click.option('--report_metrics', required=True, type=str, default=Constants.METRICS, multiple=True, show_default=True) @click.option('--device', required=True, type=str, default="cuda:0", show_default=True) def main( data_dir: str, size: str, interaction: str, hours: list[float], validation_metric: str, report_metrics: list[str], device: str, ): print(f"REPORT METRICS: {report_metrics}") print(f"SIZE {size}, INTERACTION {interaction}") result = item_knn( data_dir, size, interaction, device, hours=hours if hours[0] != -1 else DEFAULT_GRIDS[size][interaction], validation_metric=validation_metric, report_metrics=report_metrics, ) print(json.dumps(result, indent=2)) def scan(path: str, dataset_size: str, dataset_name: str) -> pl.LazyFrame: path = Path(path) / dataset_size / dataset_name df = pl.scan_parquet(path.with_suffix(".parquet")) return df def preprocess( df: pl.LazyFrame, interaction: str, val_size: int ) -> tuple[pl.LazyFrame, pl.LazyFrame | None, pl.LazyFrame]: if interaction == "listens": df = df.filter(pl.col("played_ratio_pct") >= Constants.TRACK_LISTEN_THRESHOLD) train, val, test = timesplit.flat_split_train_val_test( df, val_size=val_size, test_timestamp=Constants.TEST_TIMESTAMP ) return ( train, val.collect(engine="streaming").lazy() if val is not None else None, test.collect(engine="streaming").lazy(), ) def eliminate_zeros(x: torch.Tensor, threshold: float = 1e-9) -> torch.Tensor: mask = (x._values() > threshold).nonzero() nv = x._values().index_select(0, mask.view(-1)) ni = x._indices().index_select(1, mask.view(-1)) return torch.sparse_coo_tensor(ni, nv, x.shape) def create_weighted_sparse_tensor(train: pl.LazyFrame, tau: float) -> torch.Tensor: uid_mapping = ( train.select("uid").unique().with_columns(pl.col("uid").rank(method="dense").alias("uid_idx") - 1).collect() ) item_mapping = ( train.select("item_id") .unique() .with_columns(pl.col("item_id").rank(method="dense").alias("item_idx") - 1) .collect() ) processed = ( train.with_columns(pl.max("timestamp").over("uid").alias("max_timestamp")) .with_columns((pl.col("max_timestamp") - pl.col("timestamp")).alias("delta")) .with_columns((tau ** pl.col("delta")).alias("weight")) .join(uid_mapping.lazy(), on="uid", how="inner") .join(item_mapping.lazy(), on="item_id", how="inner") ) coo_data = processed.group_by(["uid_idx", "item_idx"]).agg(pl.sum("weight").alias("total_weight")).collect() indices = torch.concat([coo_data["uid_idx"].to_torch()[None, :], coo_data["item_idx"].to_torch()[None, :]], dim=0) values = torch.tensor(coo_data["total_weight"].to_numpy(), dtype=torch.float) return eliminate_zeros( torch.sparse_coo_tensor( indices=indices, values=values, size=(uid_mapping["uid_idx"].max() + 1, item_mapping["item_idx"].max() + 1) ) ) def sparse_normalize(sparse_tensor: torch.Tensor, dim=0, eps=1e-12): indices = sparse_tensor.coalesce().indices() values = sparse_tensor.coalesce().values() unique_dim_indices, inverse = torch.unique(indices[dim], return_inverse=True) squared_values = values**2 sum_squared = torch.zeros_like(unique_dim_indices, dtype=torch.float32) sum_squared.scatter_add_(0, inverse, squared_values) norms = torch.sqrt(sum_squared + eps) normalized_values = values / norms[inverse] return torch.sparse_coo_tensor(indices, normalized_values, sparse_tensor.size()) def training( train: pl.LazyFrame, hour: float, user_item: torch.Tensor, user_ids: torch.Tensor, device: str, decay: float = 0.9 ) -> Embeddings: tau = 0.0 if hour == 0 else decay ** (1 / 24 / 60 / 60 / (hour / 24)) user_item_with_tau = create_weighted_sparse_tensor(train, tau) user_embeddings = (user_item_with_tau @ user_item.T).to_dense() user_embeddings = torch.nn.functional.normalize(user_embeddings, dim=-1) return Embeddings(user_ids, user_embeddings.to(device)) def evaluation( train: pl.LazyFrame, val: pl.LazyFrame, device: str, hours: list[float], metrics: list[str] ) -> list[dict[str, Any]]: num_ranked_items = max([int(x.split("@")[1]) for x in metrics]) unique_user_ids = train.select("uid").unique().sort("uid").collect(engine="streaming")["uid"].to_torch().to(device) unique_item_ids = ( train.select("item_id").unique().sort("item_id").collect(engine="streaming")["item_id"].to_torch().to(device) ) user_item = create_weighted_sparse_tensor(train, 1.0) item_embeddings = sparse_normalize(user_item.T.to(device), dim=-1) item_embeddings = Embeddings(unique_item_ids, item_embeddings) targets = Targets.from_sequential( val.group_by('uid', maintain_order=True).agg(pl.all().exclude('uid')).select(['uid', 'item_id']), device, ) hour2metrics = [] for hour in hours: user_embeddings = training( train=train, hour=hour, user_item=user_item, user_ids=unique_user_ids, device=device, ) ranked = rank_items( users=user_embeddings, items=item_embeddings, num_items=num_ranked_items, batch_size=128, ) del user_embeddings gc.collect() hour2metrics.append(calc_metrics(ranked, targets, metrics)) del unique_user_ids del unique_item_ids del item_embeddings del targets gc.collect() return hour2metrics def item_knn( data_dir: str, size: str, interaction: str, device: str, hours: list[float], validation_metric: str, report_metrics: list[str], ) -> dict[str, Any]: df = scan(data_dir, size, interaction) # hyperopt by validation train, val, _ = preprocess(df, interaction, val_size=Constants.VAL_SIZE) results = evaluation(train, val, device, hours, [validation_metric]) metric_name, k = validation_metric.split('@') best_hour = hours[argmax(results, lambda x: x[metric_name][int(k)])] print(f"FINAL HYPERPARAMS {best_hour=}") # train final model train, _, test = preprocess(df, interaction, val_size=0) return evaluation(train, test, device, [best_hour], report_metrics)[0] if __name__ == "__main__": main()