File size: 8,953 Bytes
55ce402
 
 
 
 
f05772a
55ce402
f05772a
55ce402
 
 
 
 
 
 
 
 
 
 
910fca9
0510849
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
910fca9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0510849
 
 
 
 
 
 
 
 
 
 
 
910fca9
 
 
0510849
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ec4114
 
 
 
 
 
0510849
 
55ce402
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08dcb66
 
55ce402
 
 
 
 
 
 
 
 
 
08dcb66
 
 
 
55ce402
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0510849
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
---
annotations_creators:
- crowdsourced
language_creators:
- found
language:
- en
license:
- mit
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- text-retrieval
task_ids:
- document-retrieval
pretty_name: Text-based NP Enrichment
dataset_info:
  features:
  - name: id
    dtype: string
  - name: text
    dtype: string
  - name: tokens
    sequence: string
  - name: nps
    list:
    - name: text
      dtype: string
    - name: first_char
      dtype: int32
    - name: last_char
      dtype: int32
    - name: first_token
      dtype: int32
    - name: last_token
      dtype: int32
    - name: id
      dtype: string
  - name: np_relations
    list:
    - name: anchor
      dtype: string
    - name: complement
      dtype: string
    - name: preposition
      dtype:
        class_label:
          names:
            '0': about
            '1': for
            '2': with
            '3': from
            '4': among
            '5': by
            '6': 'on'
            '7': at
            '8': during
            '9': of
            '10': member(s) of
            '11': in
            '12': after
            '13': under
            '14': to
            '15': into
            '16': before
            '17': near
            '18': outside
            '19': around
            '20': between
            '21': against
            '22': over
            '23': inside
    - name: complement_coref_cluster_id
      dtype: string
  - name: coref
    list:
    - name: id
      dtype: string
    - name: members
      sequence: string
    - name: np_type
      dtype:
        class_label:
          names:
            '0': standard
            '1': time/date/measurement
            '2': idiomatic
  - name: metadata
    struct:
    - name: annotators
      struct:
      - name: coref_worker
        dtype: int32
      - name: consolidator_worker
        dtype: int32
      - name: np-relations_worker
        sequence: int32
    - name: url
      dtype: string
    - name: source
      dtype: string
  splits:
  - name: train
    num_bytes: 41308170
    num_examples: 3988
  - name: validation
    num_bytes: 5495419
    num_examples: 500
  - name: test
    num_bytes: 2203716
    num_examples: 500
  - name: test_ood
    num_bytes: 2249352
    num_examples: 509
  download_size: 14194578
  dataset_size: 51256657
---

# Dataset Card for Text-based NP Enrichment

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-instances)
  - [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)

## Dataset Description

- **Homepage:** https://yanaiela.github.io/TNE/
- **Repository:** https://github.com/yanaiela/TNE
- **Paper:** https://arxiv.org/abs/2109.12085
- **Leaderboard:** [TNE OOD](https://leaderboard.allenai.org/tne-ood/submissions/public)
[TNE](https://leaderboard.allenai.org/tne/submissions/public)
- **Point of Contact:** [Yanai Elazar](mailto:[email protected])

### Dataset Summary

Text-based NP Enrichment (TNE) is a natural language understanding (NLU) task, which focus on relations between noun phrases (NPs) that can be mediated via prepositions. The dataset contains 5,497 documents, annotated exhaustively with all possible links between the NPs in each document.

The main data comes from WikiNews, which is used for train/dev/test. We also collected an additional set of 509 documents to serve as out of distribution (OOD) data points, from the Book Corpus, IMDB reviews and Reddit.

### Supported Tasks and Leaderboards

The data contain both the main data for the TNE task, as well as coreference resolution data.
There are two leaderboards for the TNE data, one for the standard test set, and another one for the OOD test set:
- [TNE Leaderboard](https://leaderboard.allenai.org/tne/submissions/public)
- [TNE OOD Leaderboard](https://leaderboard.allenai.org/tne-ood/submissions/public)

### Languages

The text in the dataset is in English, as spoken in the different domains we include. The associated BCP-47 code is `en`.

## Dataset Structure

### Data Instances

The original files are in a jsonl format, containing a dictionary of a single document, in each line.
Each document contain a different amount of labels, due to the different amount of NPs.
The test and ood splits come without the annotated labels.

### Data Fields

A document consists of:

* `id`: a unique identifier of a document, beginning with `r` and followed by a number
* `text`: the text of the document. The title and subtitles (if exists) are separated with two new lines. The paragraphs
are separated by a single new line.
* `tokens`: a list of string, containing the tokenized tokens
* `nps`: a list of dictionaries, containing the following entries:
  * `text`: the text of the np
  * `start_index`: an integer indicating the starting index in the text
  * `end_index`: an integer indicating the ending index in the text
  * `start_token`: an integer indicating the first token of the np out of the tokenized tokens
  * `end_token`: an integer indicating the last token of the np out of the tokenized tokens
  * `id`: the id of the np
* `np_relations`: these are the relation labels of the document. It is a list of dictionaries, where each
dictionary contains:
  * `anchor`: the id of the anchor np
  * `complement`: the id of the complement np
  * `preposition`: the preposition that links between the anchor and the complement. This can take one out of 24 pre-defined preposition (23 + member(s)-of)
  * `complement_coref_cluster_id`: the coreference id, which the complement is part of.
* `coref`: the coreference labels. It contains a list of dictionaries, where each dictionary contains:
  * `id`: the id of the coreference cluster
  * `members`: the ids of the nps members of such cluster
  * `np_type`: the type of cluster. It can be either 
    * `standard`: regular coreference cluster
    * `time/date/measurement`: a time / date / measurement np. These will be singletons.
    * `idiomatic`: an idiomatic expression
* `metadata`: metadata of the document. It contains the following:
  * `annotators`: a dictionary with anonymized annotators id
    * `coref_worker`: the coreference worker id
    * `consolidator_worker`: the consolidator worker id
    * `np-relations_worker`: the np relations worker id
  * `url`: the url where the document was taken from (not always existing)
  * `source`: the original file name where the document was taken from


### Data Splits

The dataset is spread across four files, for the four different splits: train, dev, test and test_ood.
Additional details on the data statistics can be found in the [paper](https://arxiv.org/abs/2109.12085)

## Dataset Creation

### Curation Rationale

TNE was build as a new task for language understanding, focusing on extracting relations between nouns, moderated by prepositions.

### Source Data

#### Initial Data Collection and Normalization

[Needs More Information]

#### Who are the source language producers?

[Needs More Information]

### Annotations

#### Annotation process

[Needs More Information]

#### Who are the annotators?

[Needs More Information]

### Personal and Sensitive Information

[Needs More Information]

## Considerations for Using the Data

### Social Impact of Dataset

[Needs More Information]

### Discussion of Biases

[Needs More Information]

### Other Known Limitations

[Needs More Information]

## Additional Information

### Dataset Curators

The dataset was created by Yanai Elazar, Victoria Basmov, Yoav Goldberg, Reut Tsarfaty, during work done at Bar-Ilan University, and AI2.

### Licensing Information

The data is released under the MIT license.

### Citation Information

```bibtex
@article{tne,
    author = {Elazar, Yanai and Basmov, Victoria and Goldberg, Yoav and Tsarfaty, Reut},
    title = "{Text-based NP Enrichment}",
    journal = {Transactions of the Association for Computational Linguistics},
    year = {2022},
}
```

### Contributions

Thanks to [@yanaiela](https://github.com/yanaiela), who is also the first author of the paper, for adding this dataset.